ANDERSON JUNIOR COLLEGE 2009 PRELIMINARY EXAMINATION HIGHER 2 CHEMISTRY PAPER 3 SOLUTIONS

- **1** (a) (i) $CH_3COCH_3(I) + 4O_2(g) \rightarrow 3CO_2(g) + 3H_2O(I)$
 - (ii) Heat absorbed by water = $0.70 \times 0.050 \times 1790 = 62.65 \text{ kJ}$ Let **m** be the maximum mass of water brought to boiling. Heat absorbed by water = $\mathbf{m}c\Delta T = \mathbf{m}(4.20)(100-15) = 357 \text{ m J}$ 357 m = 62.650 $\mathbf{m} = \underline{175 \text{ g}}$
 - (iii) Heat loss to surroundings.
 - (iv) Since the forward reaction is accompanied by a decrease in number of moles of gaseous particles ($\Delta n = -1$) and there is less disorder (or disorder decreases) which results in a negative entropy change.
 - (v) $\Delta G^{\theta} = \Delta H^{\theta} T\Delta S^{\theta}$

Since ΔS^{θ} = negative and ΔH^{θ} = negative, a high temperature will give rise to an increase in $|T\Delta S^{\theta}|$ such that $|T\Delta S^{\theta}| > |\Delta H^{\theta}|$, ΔG^{θ} becomes positive and therefore reaction is not feasible.

(b) (i)

$$CH_{3}COCH_{3}(l)$$
 ΔH^{θ}_{at} (propanone)
 -248
 $3C(g) + 6H(g) + O(g)$
 $3C(g) + 6H(g) + O(g)$
 $3C(s) + 3H_{2}(g) + \frac{1}{2}O_{2}(g)$

By Hess' Law,
 ΔH^{θ}_{at} (propanone) = ± 3950 kJ mol⁻¹
(ii) $\Delta H^{\theta}at$ (propanone) = $2BE(C-C) + 6BE(C-H) + BE(C=O)$
 $= 2(+350) + 6(+410) + (+740)$
 $= \pm 3900$ kJ mol⁻¹

(iii) $\Delta H^{\theta}_{vaporisation}$ (propanone) = + 3950 – 3900 = <u>+ 50 kJ mol⁻¹</u>

2 (a) (i) Nucleophilic substitution

(ii) Reaction II : LiAlH₄ in dry ether (or anhydrous) **OR** H₂(g) over Pt catalyst Reaction III : (limiting) Cl_2 , presence of uv light (or heat) Reaction IV : KOH in ethanol (or alcoholic KOH), reflux

(iii)
$$H_2N$$
—CH—C H_2NH_2

- (b) <u>E</u> Heat with NaOH (aq) and acidify with excess dilute HNO₃. Add AgNO₃ (aq). chloromethylamine : white ppt and E : cream ppt
 - <u>F</u> Add Br₂ (aq)
 F : decolourisation of brown Br₂ (aq).
- (c) The p-orbital on Cl can overlap with the π electron cloud of the aromatic ring, making the C–Cl bond stronger and less easily cleaved.
- (d) (i) Since 1 mol $CH_3N=NCH_3 \equiv 1 \text{ mol } CH_3CH_3 \equiv 1 \text{ mol } N_2$

At any time t, if $x \text{ cm}^3$ of CH₃N=NCH₃ has reacted, then $x \text{ cm}^3$ of CH₃CH₃ and $x \text{ cm}^3$ of N₂ would be formed.

Hence volume of $CH_3N=NCH_3$ at any time *t*, *V* = initial total volume of gas – volume of $CH_3N=NCH_3$ reacted + volume of CH_3CH_3 formed + volume of N₂ formed

V = 600 - x + x + x = 600 - x (Shown)

(ii)	Time / s	0	210	420	860	1350	1800
	Vol of N ₂ / cm ³	0	6	10	15	18	19

Constant half-life at 390 s \Rightarrow 1st order reaction

(iii)
$$k = \ln 2 / t_{1/2} = \ln 2 / 390 = 1.65 \times 10^{-3} \text{ s}^{-1}$$

As shown on the diagram, when temperature increases, the number of reactant molecules with energy greater or equal to the activation energy, E_a , will increase. This results in an increase in the frequency of effective collisions and the rate of reaction increases.

- 3 (a) (i) $2Ni(OH)_2 + Cd(OH)_2 \rightarrow 2NiO(OH) + Cd + 2H_2O$
 - (ii) No. of moles of Cd(OH)₂ = 3.65 / (112 + 17 + 17) = 0.025 mol
 No. of moles of electrons = 0.025 x 2 = 0.05 mol
 Total amount of charge = 0.05 x 96500 = 4825 C
 Time taken = 4825 / 3 = <u>1610 s</u> (26.8 min)
 - (iii) nickel electrode (anode) : $OH^- \rightarrow O_2 + 2H_2O + 4e^$ cadmium electrode (cathode) : $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$
 - (b) (i) The carbon electrode coated with MnO_2 is the cathode, as the oxidation number of Mn changes from <u>+4 in MnO_2</u> to <u>+3 in MnO(OH)</u>.
 - (ii) $E_{red}^{\theta} = 1.60 0.76 = + 0.84 V$
 - (iii) No change in E^{θ}_{cell} as the concentration of solid zinc remains the same
 - (iv) More environmentally friendly as cadmium is highly toxic (or no leakage / cheaper)
 - (c) Colour in Mn compound is due to d-d transition. In the presence of ligands, the partially filled 3d orbitals split into two levels with a small energy gap within the visible light energy. An electron from the lower energy level d-orbital can absorb energy from visible light and move to a vacant higher energy d-orbital. The colour of the manganese compound is the complementary colour to the one absorbed.
 - Zn^{2+} has d¹⁰ configuration, no vacant d orbitals for d-d transition.
 - (d) (i) KMnO₄ (ii) Disproportionation
 - (iii) No. of moles of $MnO_2 = 0.174 / (54.9 + 16 \times 2) = 0.002 \text{ mol}$

No. of moles of compound H = 40/1000 x 0.5 x 1/5 = 0.004 mol

4

4 (a)
$$[H^+] = 10^{-6.5} = 3.16 \times 10^{-7} \text{ mol dm}^{-3}$$

 $10^{-3.86} = \frac{(3.16 \times 10^{-7})^2}{[\text{lactic acid}]} \implies [\text{lactic acid}] = \underline{7.24 \times 10^{-10} \text{ mol dm}^{-3}}$

(b) (i) pH of buffer solution = pKa +
$$\lg \frac{[\text{salt}]}{[acid]}$$
 = 3.86 + $\lg \frac{0.200}{0.10}$ = 4.16

(ii) no. of moles of H⁺ added =
$$\frac{10}{1000} \times 0.10 = 1.00 \times 10^{-3} \text{ mol}$$

$$[\text{lactate}]_{\text{new}} = \frac{0.200 - 1.00 \times 10^{-3}}{1.0 + 10.0/1000} = 0.197 \text{ mol dm}^{-3}$$

$$[\text{lactic acid}]_{\text{new}} = \frac{0.10 + 1.00 \times 10^{-3}}{1.0 + 10.0/1000} = 0.100 \text{ mol dm}^{-3}$$

new pH of buffer solution = pKa +
$$\lg \frac{[salt]}{[acid]}$$
 = 3.86 + $\lg \frac{0.197}{0.100}$ = 4.15

(c) In order of <u>increasing</u> pH:

- (d) (i) dilute HNO₃, room temperature
 - (ii) Electrophilic substitution

(e) (i) When the first trace of Fe(OH)₂ is formed, $[Fe^{2^+}] [OH^-]^2 \ge K_{sp} (Fe(OH)_2)$ $(0.010) [OH^-]^2 \ge 1.6 \times 10^{-14}$ $[OH^-] = 1.265 \times 10^{-6} \text{ mol dm}^{-3}$ $pH = 14 + lg(1.265 \times 10^{-6}) = \underline{8.10}$

(ii) Maximum amount of Fe^{2+} can be extracted from the solution at the point when the first trace of Mg(OH)₂ is formed,

$$[Mg^{2^{+}}] [OH^{-}]^{2} \ge K_{sp} (Mg(OH)_{2})$$

$$(0.010) [OH^{-}]^{2} \ge 1.2 \times 10^{-11}$$

$$[OH^{-}] = 3.464 \times 10^{-5} \text{ mol dm}^{-3}$$

$$pH = 14 - pOH = 14 + lg (3.464 \times 10^{-5}) = \underline{9.54}$$

$$[Fe^{2^{+}}] \text{ remaining in the solution} = \frac{1.6 \times 10^{-14}}{(3.464 \times 10^{-5})^{2}} = 1.333 \times 10^{-5} \text{ mol dm}^{-3}$$
the percentage of Fe²⁺ remaining in the solution at this point
$$= \frac{1.333 \times 10^{-5}}{0.010} \times 100\% = \underline{0.133\%}$$

- 5 (a) (i) With <u>cold</u> aq NaOH: $Cl_2 + 2NaOH \rightarrow NaCl + NaClO + H_2O$ With <u>hot</u> concentrated NaOH: $3Cl_2 + 6NaOH \rightarrow 5NaCl + NaClO_3 + 3H_2O$
 - (ii) BrO₃⁻ oxidizes hydrogen sulphide to sulfur (formed as yellow ppt); itself reduced to solution of bromine Br₂ (orange-red solution).
 Br₂ oxidizes iodide to iodine (dark brown solution) which precipitates out as black solids. (the brown solution is due to I₃⁻ formed when I₂ dissolves in KI solution)

- (b) HI molecule has more electrons, thus instantaneous dipole-induced dipole attractions (i.d.i.d.) between HI molecules are stronger than between HC*l* molecules. Hydrogen bonding between HF molecules is stronger than i.d.-i.d. attractions between HC*l* molecules. Thus more energy needed to overcome the stronger intermolecular forces in HF and in HI than in HC*l*.
- $\begin{array}{lll} \text{(c)} & \text{BrF}_3: \text{T-shaped} & \text{changes to} \\ & \text{SbF}_5: \text{Trigonal bipyramidal} & \text{changes to} & \text{BrF}_2^+: \text{bent shape} \\ & \text{SbF}_6^-: \text{octahedral} \end{array}$
- (d) (i) Phenoxide ion formed is a stronger nucleophile than phenol which speeds up the rate of reaction.
 - (ii) C-C*l* bond is stronger than C-I bond
- (e) Electrophilic addition of 2 mol $Br_2 \Rightarrow P$ is an diene (or it has two C=C double bonds)
 - Insoluble in aq NaOH \Rightarrow **P** is not a phenol
 - Reaction with Tollen's \Rightarrow **P** and **Q** have aldehyde groups
 - Oxidative cleavage of diene P produces R and S.
 - Triodomethane reaction with aq alkaline $I_2 \Rightarrow R$ has CH_3CO group.

R is CH₃COCO₂H

S is :

• Thus, P is

• And reaction of P with Br gives structure Q

