Paya Lebar Methodist Girls' School (Secondary) Department of Mathematics 2017 Preliminary Examination Additional Mathematics Paper 1 (4047/1) Worked Solutions

No.	Answer
1	State the values between which each of the following must lie
	(a) the principal value of $\tan^{-1} x$, Principal value of $\tan^{-1} x = -90^{\circ} \le \tan^{-1} x \le 90^{\circ}$ Principal value of $\tan^{-1} x = -\frac{\pi}{2} \le \tan^{-1} x \le \frac{\pi}{2}$
	(b) the principal value of $\cos^{-1} 2x$.
	Principal value of $\cos^{-1} 2x = 0^{\circ} \le \cos^{-1} 2x \le 90^{\circ}$
	Principal value of $\cos^{-1} 2x = 0 \le \cos^{-1} 2x \le \frac{\pi}{2}$
	2
2	The function f is defined, for all values of x, by $f(x) = (x + 3)(1 - 2x)^2$. Find the range of values of x for which f is a decreasing function.
	$f(x) = (x+3)(1-2x)^2$
	$= (x+3)(1-4x+4x^2)$
	$= x - 4x^2 + 4x^3 + 3 - 12x + 12x^2$
	$= 4x^3 + 8x^2 - 11x + 3$
	$f'(x) = 12x^2 + 16x - 11$
	For $f(x)$ to be a decreasing function,
	f'(x) < 0
	$12x^2 + 16x - 11 < 0$
	(6x+11)(2x-1) < 0

No. Answer
No. Answer
- 11
- 11
- 12
Range of values of
$$x: -\frac{11}{6} < x < \frac{1}{2}$$

Range of values of $(2x - 1)^2 \left(1 + \frac{p}{x}\right)^8$, where p is a positive constant, there is no term in $\frac{1}{x^3}$.
Find the possible values of the constant p.
 $(2x - 1)^2 \left(1 + \frac{p}{x}\right)^8$
= $(4x^2 - 4x + 1) \left[1 + ... {8 \choose 3} (1)^5 \left(\frac{p}{x}\right)^3 + {8 \choose 4} (0)^4 \left(\frac{p}{x}\right)^4 + {8 \choose 5} (0)^5 \left(\frac{p}{x}\right)^5 + ...\right]$
 $\left(\frac{8}{3}\right) p^3 + (-4) {8 \choose 4} p^4 + (4) {8 \choose 5} p^5 = 0$
 $56p^3 - 280p^4 + 224p^5 = 0$
 $56p^3 (1 - 5p + 4p^2) = 0$
 $56p^3 (1 - 5p + 4p^2) = 0$
 $56p^3 (4p - 1) (p - 1) = 0$
 $p = 0$ (N.A. as $p > 0$) OR $p = \frac{1}{2}$ OR $p = 1$

No. Answer A curve has the equation $y = 4x^2 - 24x + 30$. 4 Express $4x^2 - 24x + 30$ in the form $[a(x + h)]^2 + k$. (i) $4x^2 - 24x + 30 = 4\left(x^2 - 6x + \frac{15}{2}\right)$ $=4\left[(x-3)^2+\frac{15}{2}-9\right]$ $=4\left[(x-3)^2-\frac{3}{2}\right]$ $=4(x-3)^2-6$ $= [2(x-3)]^2 - 6$ Show that the minimum point of the curve has coordinates (3, -6). (ii) Since $[2(x-3)]^2 \ge 0$, the lowest value of $y = [2 (x - 3)]^2 - 6$ is - 6 and this occurs when $[2 (x - 3)]^2 = 0$, when x has a value of 3. Hence the minimum point on the curve has coordinates (3, -6).Sketch the graph of $y = |4x^2 - 24x + 30|$, indicating clearly the **exact** *x*-intercept(s) and *y*-(iii) intercept. Ч = 14x2-24x + 30 | 1 (3,6) 5 0 3 - 16 3 + 50 -10 Shape of curve and point (3, -6)y-intercept *x*-intercepts

No. Answer A line of gradient *m* passes through the point (0, -10). (iv) Given that $0 < m \le 10$, determine the **exact** value of *m*, for which the line intersects the graph of $y = |4x^2 - 24x + 30|$ at one real and distinct point. For line to intersect curve at 1 real and distinct point only, the point of intersection is $\left(3+\frac{\sqrt{6}}{2},0\right).$ Gradient of line, $m = \frac{0 - (-10)}{\left(3 + \frac{\sqrt{6}}{2}\right) - 0}$ $=10 \div \left(\frac{6+\sqrt{6}}{2}\right)$ $=10 \times \left(\frac{2}{6+\sqrt{6}}\right)$ $=\frac{20}{6+\sqrt{6}}\times\frac{6-\sqrt{6}}{6-\sqrt{6}}$ $=\frac{20\left(6-\sqrt{6}\right)}{30}$ $=\frac{2}{3}\left(6-\sqrt{6}\right)/\frac{12-2\sqrt{6}}{3}/4-\frac{2}{3}\sqrt{6}$

No.	Answer
5	(i) Factorise completely $2x^3 + 7x^2 + 4x - 4$.
	Let $f(x) = 2x^3 + 7x^2 + 4x - 4$
	$\operatorname{Lot} \mathbf{I}(X) = 2X + YX + 1X + 1$
	$f\left(\frac{1}{2}\right) - 2\left(\frac{1}{2}\right)^3 + 7\left(\frac{1}{2}\right)^2 + 4\left(\frac{1}{2}\right) - 4$
	$(2)^{-2}(2)^{++}(2)^{-+}(2)^{-+}$
	= 0
	(2n-1) is a factor of $f(n)$
	(2x-1) is a factor of $f(x)$.
	$f(x) = 2x^3 + 7x^2 + 4x - 4$
	$= (2x - 1)(x^2 + 4x + 4)$
	$=(2x-1)(x+2)^{2}$
	$12x^2 + 32x + 31$
	(ii) Express $\frac{12x + 52x + 51}{2x^3 + 7x^2 + 4x - 4}$ in partial fractions.
	2x + 7x + 4x = 4
	$\frac{12x^2 + 32x + 31}{2} - \frac{A}{2} + \frac{B}{2} + \frac{C}{2}$
	$\overline{(2x-1)(x+2)^2} - \overline{2x-1} + \overline{x+2} + \overline{(x+2)^2}$
	$A(r+2)^{2} + B(2r-1)(r+2) + C(2r-1)$
	$=\frac{n(x+2)+2(2x-1)(x+2)+2(2x-1)}{(2x-1)(x+2)^2}$
	$12x^{2} + 32x + 31 = A(x+2)^{2} + B(2x-1)(x+2) + C(2x-1)$
	When $r = \begin{pmatrix} 1 \\ 12 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix}^2 + 22 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + 21 = 4 \begin{pmatrix} 5 \\ 2 \end{pmatrix}^2$
	when $x = \frac{1}{2}$, $\frac{12}{2} \left(\frac{1}{2}\right) + \frac{32}{2} \left(\frac{1}{2}\right) + \frac{31 - 4}{2} \left(\frac{1}{2}\right)$
	25_{1} 50
	$\frac{-4}{4}A = 30$
	A = 8
	When $x = -2$, $12(-2)^2 + 32(-2) + 31 = C(-5)$
	-5C = 15
	C = -3

No.	Answer
	When $x = 0$,
	$12(0)^{2} + 32(0) + 31 = 8(2)^{2} + B(2)(-1) + (-3)(-1)$
	35 - 2B = 31
	B=2
	$12x^2 + 32x + 31$ 8 2 3
	$\frac{1}{(2x-1)(x+2)^2} = \frac{1}{2x-1} + \frac{1}{x+2} - \frac{1}{(x+2)^2}$
6	The equation of a curve is $y = ar^2 - 3r + 4 - a$, where <i>a</i> is a constant
0	The equation of a curve is $y = ax = 5x + 4 - a$, where a is a constant.
	(i) In the asso where $r = 2$ find the set of values of v for which the sum values completely
	(1) In the case where $a = -2$, find the set of values of x for which the curve lies completely below the line
	y = -3.
	When $a = -2$, $y = -2x^2 - 3x + 6$
	If the curve lies completely below the line $y = -3$,
	$-2x^2-3x+6<-3$
	$2x^2 + 3x - 6 > 3$
	$2x^2 + 3x - 9 > 0$
	(2x-3)(x+3) > 0
	-3 $\frac{3}{2}$
	Set of values of x: $x < -3$ OR $x > \frac{3}{2}$

No. Answer In the case where a = 3, show that the line (ii) y = 3x - 2 is a tangent to the curve. When a = 3, $y = 3x^2 - 3x + 1$ When the curve and line intersects, $3x^2 - 3x + 1 = 3x - 2$ $3x^2 - 6x + 3 = 0$ $x^2 - 2x + 1 = 0$ $b^2 - 4ac = (-2)^2 - 4(1)(1)$ = 0Since discriminant = 0, the line y = 3x - 2 intersects the curve at only 1 real and distinct point. Hence the line is a tangent to the curve. (iii) Determine if there is any other value of *a* for which the line y = 3x - 2 intersects the curve at only one point. When the curve and line intersects, $ax^2 - 3x + 4 - a = 3x - 2$ $ax^2 - 6x + (6 - a) = 0$ For line to intersect curve at only 1 point, $b^2 - 4ac = 0$. $(-6)^2 - 4(a)(6-a) = 0$ $4a^2 - 24a + 36 = 0$ $a^2 - 6a + 9 = 0$ $(a-3)^2 = 0$ a = 3 [part (ii)] There is only 1 real and repeated root for a, i.e. a = 3. Hence there is no other value of a for which the line intersects the curve at one point only.

No.	Answer
7	(i) Prove that $\frac{\sin\theta}{(\sec\theta - \tan\theta)(\sin\theta + 1)} = \tan\theta$.
	$\frac{\sin\theta}{(\sec\theta - \tan\theta)(\sin\theta + 1)}$
	$= \frac{\sin\theta}{\left(\frac{1}{\cos\theta} - \frac{\sin\theta}{\cos\theta}\right)(\sin\theta + 1)}$
	$= \frac{\sin\theta}{\left(\frac{1-\sin\theta}{\cos\theta}\right)(\sin\theta+1)}$
	$= \frac{\sin\theta\cos\theta}{1-\sin^2\theta}$
	$= \frac{\sin\theta\cos\theta}{\cos^2\theta}$
	$= \frac{\sin\theta}{\cos\theta}$
	$= \tan \theta$
	= RHS (proven)
	(ii) Find all the values of θ between 0 and π for which $\frac{\sin \theta}{(\sec \theta - \tan \theta) (\sin \theta + 1)} = 1 - \sec^2 \theta.$
	$\frac{\sin\theta}{(\sec\theta - \tan\theta)(\sin\theta + 1)} = 1 - \sec^2\theta$
	$\tan \theta = 1 - \sec^2 \theta$
	$\tan \theta = 1 - (1 + \tan^2 \theta)$
	$\tan^2\theta + \tan\theta = 0$
	$\tan \theta (\tan \theta + 1) = 0$
	$\tan \theta = 0$ (no solution) OR $\tan \theta = -1$

No.				A	nswer			
	Since $\tan \theta < 0$, θ lies in the 2nd quadrant.							
	Consider tar	$\alpha = 1, \alpha =$	$=\frac{\pi}{4}.$					
	$\theta = \pi - \frac{\pi}{4}$ $= \frac{3\pi}{4} \text{ rad.}$	/ 2.36 rad.						
8	An auction l their art piec	house claim ces has beer	ned that it is n increasing	worthwhil g exponentia	e to invest ally since it	in their art pieces as the value of one of was produced.		
	The value, \$ start of the y	SV, of this a vear 1995.	rt piece is r	elated to <i>t</i> ,	the number	of years since it was produced at the		
	The variable $V = 10\ 000$ start of some	es V and t ca + ae^{kt} , whe e of the yea	an be mode re <i>a</i> and <i>k</i> a rs 2000 to 2	lled by the re constant 2015.	equation s. The table	e below gives values of V and t at the		
	Year	2000	2005	2010	2015			
	t years	5	10	15	20			
	\$V	16 000	20 260	27 545	40 000			
	(i) Plot a suitable straight line graph to show that the model is valid for the years 2000 to 2015. $V = 10\ 000 + ae^{kt}$ $V - 10\ 000 = ae^{kt}$ $\ln(V - 10\ 000) = \ln a + \ln e^{kt}$ $\ln(V - 10\ 000) = kt + \ln a$							
	Vertical axis	s: ln (V – 10	000)					
	Horizontal a	ixis: t	ŕ					
	Gradient: k							
	Vertical axis	s-intercept:	ln a					
L	1	-						

			An	swer
t years	5	10	15	20
V	16 000	20 260	27 545	40 000
$\ln(v - 100)$	000) 8.70	9.24	9.77	10.31
$\ln (V - 10)$	$000) = kt + \ln$	а		
Straight lin	ne graph with s	suitable so	cale	
) Estimat	the value of	a and of	<i>k</i> .	
a = 8.1875				
$a = e^{0.1075}$)			
≈ 3393.72 = 3600 (3	s.f.) OR 35	96 (neare	st whole r	10.)
		(
$=\frac{9.625-8}{13.75-0}$	<u>25</u> 75			
$=\frac{11}{104}$ / 0.10	06 (3 s.f.)			
104				
i) A claim from the	n was made tha e time it was p	t in the ye roduced.	ear 2065, Do you a	this art pi agree? Jus
= 10 000 +	$3600e^{\frac{11}{104}t}$			
		<u> 11 </u> (70	0)	
hen $t = 70$,	$V = 10\ 000 + 3$	$600e^{104}$	whole as	
	= 5 922 240	(nearest v	vnole no.))
		$\frac{11}{10}(0)$		
iginal value	$e = 10\ 000 + 36$	$500e^{104}$		
	010 COO			

		Answer							
Increase in value from the time art piece was produced									
5 922 240 - 13 600									
13 600									
434× (nearest whole r	10.)								
× ×	,								
o. I do not agree as the inc	rease is less th	190 500x							
o, i do not agree as the me.	10050 15 1055 U								
he literan a									
(A (V = 10 00 0)			5	1 12	1				
			R 70	0	15	20			
12.50		In(V-10000)	7,10	1.27	7.11	10.31			
11-25									
10-00	•	(13	75 9.625	>		*			
				*					
		×							
8.15 ×									
8.1875									
7.50									
6-25			B1: In (V	- 10000) =	kt th	ia			
•	×		B1: Table	of values					
5.00			B1: Straul	I live crush	with swith	olo scalo			
			3	, , , , , , , , , , , , , , , , , , ,					
2. 7									
- 13 +									
2.50									
1.25									
1				1					
0	-	1		5		t			
2		10		uer .					

No. Answer The point *A* lies on the curve $y = x \ln x^2$, x > 0. The tangent to the curve at *A* is parallel to the 9 line y - 3x = 1. Find the **exact** coordinates of *A*. (i) $y = x \ln x^2, x > 0$ $\frac{\mathrm{d}y}{\mathrm{d}x} = x \left(\frac{1}{x^2}\right)(2x) + \ln x^2 \ (1)$ $= 2 + \ln x^2$ Gradient of tangent @ A = gradient of line = 3When $\frac{dy}{dx} = 3$, 2 + ln $x^2 = 3$ $\ln x^2 = 1$ $x^2 = e$ $x = \sqrt{e} / e^{\frac{1}{2}} (x > 0)$ When x = e, $y = e^2 \ln e$ $= e^{2}$ $A = \left(\sqrt{e}, \sqrt{e}\right) / \left(e^{\frac{1}{2}}, e^{\frac{1}{2}}\right)$ The normal to the curve $y = x \ln x^2$ at *A* meets the line y - 3x = 1 at *B*. Show that the x-coordinate of B can be expressed in the form $\frac{1}{10}(p\sqrt{e}+q)$, where p and (ii) q are integers to be found. Gradient of tangent @ A = 3Gradient of normal @ $A = -\frac{1}{3}$

No.	Answer
	(i) Find the value of k .
	Given $PQ = QR$,
	$\sqrt{(k-5)^2 + (4-3)^2} = \sqrt{(9-5)^2 + (10-3)^2}$
	$(k-5)^2 + 1 = 65$
	$k^2 - 10k - 39 = 0$
	(k+3)(k-13) = 0
	k = -3 OR $k = 13$ (N.A. as $k < 0$)
	A line is drawn from Q to cut the y-axis at S such that $PS = SR$.
	(ii) Find the equation of QS and the coordinates of S .
	Gradient of $PR = \frac{10-4}{9-(-3)}$ $= \frac{1}{2}$
	Gradient of $QS = -2$
	Equation of QS is $\frac{y-7}{x-3} = -2$
	y - 7 = -2x + 6
	y = -2x + 13
	S = (0, 13)
	(iii) Find the ratio of the area of triangle <i>PQR</i> to the area of quadrilateral <i>PQRS</i> .
	Area of triangle $PQR = \frac{1}{2} \begin{vmatrix} 5 & 9 & -3 & 5 \\ 3 & 10 & 4 & 3 \end{vmatrix}$
	$=\frac{1}{2}\left[77-17\right]$
	$= 30 \text{ units}^2$

$2x + 2l + \sqrt{3} \ x = 160$
$2l = 160 - 2x - \sqrt{3} x$
$l = 80 - x - \frac{\sqrt{3}}{2}x$
Area of triangular plot = $\frac{1}{2}(x)(x)(\sin 120^\circ)$ = $\frac{\sqrt{3}}{4}x^2$ m ²
Area of rectangular plot = $(\sqrt{3} x) \left(80 - x - \frac{\sqrt{3}}{2} x \right)$ = $80\sqrt{3} x - \left(\sqrt{3} + \frac{3}{2}\right) x^2 m^2$
Area of plot = $\frac{\sqrt{3}}{4}x^2 + 80\sqrt{3}x - \left(\sqrt{3} + \frac{3}{2}\right)x^2$
$= 80\sqrt{3} x - \left(\sqrt{3} + \frac{3}{2} - \frac{\sqrt{3}}{4}\right) x^{2}$
$=\frac{320\sqrt{3} x - (4\sqrt{3} + 6 - \sqrt{3})x^2}{x^2}$
$= \frac{320\sqrt{3} x - (3\sqrt{3} + 6)x^2}{4} m^2 \text{ (shown)}$
(ii) Given that x can vary, find the value of x for which the area of the plot is stationary.
Let $A = \frac{320\sqrt{3} x - (3\sqrt{3} + 6)x^2}{4}$
$\frac{dA}{dx} = \frac{320\sqrt{3} - (3\sqrt{3} + 6)(2x)}{4}$

No.	Answer
	At stationary value, when $\frac{dA}{dx} = 0$,
	$\frac{320\sqrt{3} - (3\sqrt{3} + 6)(2x)}{4} = 0$
	$320\sqrt{3} - (3\sqrt{3} + 6)(2x) = 0$
	$\left(3\sqrt{3}+6\right)(2x) = 320\sqrt{3}$
	$x = 320\sqrt{3} \div 2\left(3\sqrt{3} + 6\right)$
	$=\frac{160\sqrt{3}}{3\sqrt{3}+6}$
	≈ 24.752
	= 24.8 (3 s.f.)
	(iii) Explain why this value of x gives the farmer the largest possible area for the plot.Find this area and give your answer correct to the nearest square metre.
	$\frac{dA}{dx} = \frac{320\sqrt{3} - (3\sqrt{3} + 6)(2x)}{4}$
	$\frac{d^2 A}{dx^2} = \frac{-(3\sqrt{3}+6)(2)}{4}$
	$=\frac{-\left(3\sqrt{3}+6\right)}{2}/-5.60 \ (3 \text{ s.f.})$
	Since $\frac{d^2 A}{dx^2} < 0$, the value of $x = 24.8$ gives the largest possible are for the plot.
	Area of plot = $\frac{320\sqrt{3} (24.752) - (3\sqrt{3} + 6)(24.752)^2}{4}$
	≈ 1714.8748 = 1715 m ² (nearest m ²)