YJC 2014 Prelim Paper 3 answers

1 (a) Na₂O : dissolves readily in H₂O to form a strongly alkaline solution with pH = 13(accept 11 - 14).

 $Na_2O + H_2O \rightarrow 2NaOH$ SO_3 : dissolves in H₂O forming a strongly acidic solution with pH = 2 (accept 0 -3).

$$SO_3 + H_2O \rightarrow H_2SO_4$$

- (b) (i) Buffer solutions resist pH changes when a small amount of acid or alkali is added.
 - (ii) Small amount of H⁺:

 $CO_3^{2^-} + H^+ \text{ (or } H_3O^+) \rightarrow HCO_3^- (+H_2O)$ The H⁺ added is removed by the large reservoir of $CO_3^{2^-}$. Small amount of OH⁻: $HCO_3^- + OH^- \rightarrow CO_3^{2-} + H_2O$

The OH⁻ added is removed by the large reservoir of HCO₃⁻

(iii) Buffer most effective when $[HCO_3^-] = [CO_3^{2^-}]$ (maximum buffering capacity), using Hasselbalch equation,

$$pH = pK_a = -lg (5.61 \times 10^{-11}) = 10.3$$

Range of effectiveness = $pK_a \pm 1 = 9.3$ to 11.3

(iv) By Hasselbalch equation, $pH = pK_a + lg \frac{[CO_3^{2^-}]}{[HCO_2^{-}]}$ When $\frac{[CO_3^{2^-}]}{[HCO_2^{-}]}$ increases from 0.50 to 0.85, pH change = lg (0.85) – lg (0.50) = -0.0706 - (-0.301)= +0.230OR ratio 0.5, pH = 9.95 ratio 0.85, pH = 10.18

Difference = 10.18 - 9.95 = 0.230

(c) (i) $M_r AlCl_3 = [27 + 3(35.5)] = 133.5$ $M_r (AlCl_3)_n = 267, n = 2$ Molecular formula is Al_2Cl_6 .

(ii) Al₂O₃

(iii) When large amount of water added, aluminium chloride forms $A/(H_2O)_6^{3+}$. $A/(H_2O)_6^{3+}$ (+ H_2O) $\Rightarrow A/(H_2O)_5(OH)^{2+}$ + H^+ (or H_3O^+) **pH = 3.0**

(d) (i) Electrophilic substitution

(ii) Step 1:

$$Cl_2 + AlCl_3 \rightarrow Cl^+ + AlCl_4^-$$

Step 2:

For (iii) and (iv), accept if Br/OH is in 3rd position of cyclic ring instead of 2nd.

(c) (i)
$$E^{e}_{cell} = E_{PbO2/Pb2+} - E_{Pb2+/Pb}$$

= +1.47 - (-0.13)
= +1.60 V

- (ii) 2 PbSO₄(s) + 2 H₂O(l) \rightarrow Pb(s) + PbO₂(s) + H₂SO₄(aq) + HSO₄⁻(aq) + H⁺(aq) OR 2 PbSO₄(s) + 2 H₂O(l) \rightarrow Pb(s) + PbO₂(s) + 2 H₂SO₄(aq) OR 2 PbSO₄(s) + 2 H₂O(l) \rightarrow Pb(s) + PbO₂(s) + 2 HSO₄⁻(aq) + 2 H⁺(aq)
- (iii) As time passes, more of the reactants are being used up, causing the concentration of the reactants (H₂SO₄) to decrease. As a result, E^e_{cell} decreases.
- (iv) Hydrogen fuel cell . The reactants are constantly replenished as it is supplied from the air, thus e.m.f. remains constant. .

(d) (i)
$$K_{sp} = [Pb^{2+}][CrO_4^{2-}]$$

= s^2
= 1.69 × 10⁻¹⁴ mol² dm⁻⁶
(where s is the solubility of PbCrO_4.)
s = 1.30 × 10⁻⁷ mol dm⁻³

(ii) Precipitation occurs when ionic product > K_{sp} , so the maximum ionic product before precipitation = K_{sp} .

 $[Pb^{2+}][0.01] = 1.69 \times 10^{-14}$ $[Pb^{2+}]_{saturation} = 1.69 \times 10^{-12} \text{ mol dm}^{-3}$

(iii) $2CrO_4^{2^-} + 2H^+ \rightleftharpoons Cr_2O_7^{2^-} + H_2O$ In the presence of acid, the H⁺ concentration increases, causing the equilibrium to shift to the right by Le Chatelier's Principle, with $CrO_4^{2^-}$ forming $Cr_2O_7^{2^-}$. In the presence of alkali, [H⁺] decreases as it is neutralized by OH⁻, resulting in the equilibrium shifting left to replenish the H⁺ by LCP, thus more $CrO_4^{2^-}$ is formed.

(e) (i)
$$Pb(OH)_2 PbCO_3(s) \rightarrow 2PbO(s) + H_2O(g) + CO_2(g)$$

(ii)
$$M_r Pb(OH)_2 PbCO_3 = [2(207) + 5(16.0) + 2(1) + 12.0]$$

= 508
1 mole white lead produces 1 mole CO₂ and 1 mole H₂O, so...
Mass (in g) loss per mole white lead = $M_r CO_2 + M_r H_2O$
= 62.0
Hence, % loss in mass = (62.0 / 508) × 100%
= **12.2%**

- (iii) Decomposition temperature of Ca(OH)₂.CaCO₃ would be **lower** than that of white lead, as...
 - Ionic radius of Ca²⁺ (0.099 nm) < Ionic radius of Pb²⁺ (0.120 nm) (students need not state values)
 - Charge density of Ca²⁺ > charge density of Pb²⁺
 - Ca²⁺ polarizes OH⁻ and CO₃²⁻ electrons cloud to a greater extent
 - Bond energy of O-H and O-C bond weakened
 - Less energy needed to overcome the bond energies to decompose.

Penalised if OH^{-}/CO_{3}^{2-} not mentioned in decomposition.

- **3 (a) (i)** k = $(\ln 2) / t_{\frac{1}{2}}$ = $(\ln 2) / 5$ = 0.139 min⁻¹
 - (ii) Final [R-Br] = $(6.25 / 100) \times 1.6$ = 0.1 mol dm⁻³ $1.6 \rightarrow 0.8 \rightarrow 0.4 \rightarrow 0.2 \rightarrow 0.1$ 4 t_½ must be drawn.

(b) (i) $S_N 2$ reaction occurs because the 2 methyl groups do not pose much stearic hindrance, while $S_N 1$ may occur as the 2 electron-donating methyl groups can stabilize the carbocation.

OR

 $S_{\rm N}1$ reaction occurs because the 2 methyl groups pose significant stearic hindrance, while $S_{\rm N}2$ may occur as the 2 electron-donating methyl groups may not stabilize the carbocation.

(ii)

(iii) For $[OH^-] = 0.01 \text{ mol dm}^{-3}$, % rate = $\frac{4.7 \times 0.01}{4.7 \times 0.01 + 0.24} \times 100\% = 16.4\%$ For $[OH^{-}] = 0.1 \text{ mol } dm^{-3}$, % rate = $\frac{4.7 \times 0.1}{4.7 \times 0.1 + 0.24} \times 100\%$ = **66.2%** For $[OH^{-}] = 1.0 \text{ mol } dm^{-3}$, % rate = $\frac{4.7}{4.7 + 0.24} \times 100\%$ = **95.1%**

(iv) The higher the concentration of OH⁻, the higher the percentage rate for S_N2, as the second order kinetics rate is dependent / proportional to [OH⁻].

 (c) (i) Boiling point increases from C₂H₅Cl → C₂H₅Br → C₂H₅I. As size of molecule (HX) increases, number of electrons increases, leading to greater tendency to polarize and instantaneous-dipole-induced-dipole attraction strength increases.

Thus more energy is required to overcome to id-id.

- (ii) Atomic radius: I > Br > Cl. Thus bond energy: C - I < C - Br < C - Cl Thus C₂H₅I would react with nucleophile more readily than C₂H₅Br (than C₂H₅Cl) as the bond is more easily overcome.
- (d) (i) Electrode I.
 - (ii) $Ti^{x+} + xe^- \rightarrow Ti$

$$\frac{zF}{It} = \frac{M}{m}$$

$$\frac{x(96500)}{(0.5)(5400)} = \frac{47.9}{0.45}$$

x = 2.98 ≈ 3

<u>OR</u>

 $n_{Ti} = \frac{0.45}{47.9} = 9.39 \times 10^{-3} \text{ mol}$ Q = It = (0.5A)(90 × 60s) = 2700C

If 9.39×10^{-3} mol Ti requires 2700C, 1 mol Ti would require $\frac{2700}{9.39 \times 10^{-3}} = 287\ 400\ C$ x = Amount of electrons per mole of Ti = $\frac{287400}{96500} = 2.98 \approx 3$

$$\Delta H_{f} = 6(-394) + 3(-286) + 3054$$

= -168 kJ mol⁻¹

(ii)
$$\Delta G = \Delta H - T\Delta S = -168 - (298)(-0.384) = -53.6 \text{ kJ mol}^{-1}$$

- (b) (i) 2,4,6-trichlorophenol has a larger K_a value than phenol.
 3 electron withdrawing Cl further disperses the negative charge of the phenoxide ion, hence stabilizing the phenoxide ion to a larger extent, thus acidity (and K_a) increases.
 - (ii) Add aqueous Br₂ (or conc HNO₃). Phenol will decolourise brown Br₂ to colourless while forming a white precipitate (or for conc HNO₃, yellow precipitate), while 2,4,6-tricholorophenol would not.

Full mark given only for correct test and results.

- (ii) Sn, conc HCl, heat, followed by NaOH(aq).
- (iii) Q may form intramolecular hydrogen bonding between OH and NH₂, which would make unavailable the lone pairs or hydrogen for hydrogen bonding with water.
 1-napthol will only form intermolecular bonding with H₂O.

More accurate if ionic bond indicated between O^- and Cu^{2+} . Penalised if phenol instead of phenoxide.

- (ii) $Cu(NH_3)_4(H_2O)_2^{2+}$ or $Cu(NH_3)_4^{2+}$
- (e) (i) Cu²⁺ contains partially filled 3d orbitals. In the presence of ligands, the 3d orbitals are split into 2 groups of different energies (d and d*). When a lower energy d electrons absorbs light to be promoted to the higher energy d* orbital, it absorbs light of a particular wavelength in the visible region, allow the complementary colour to be observed.
 - (ii) This is due to ligand exchange. Different ligands of differing strengths cause the d-orbitals to be split to different extent, which would alter the d-d* energy gap and cause a different wavelength of light to be absorbed, hence a different complementary colour.
 - (iii) Cu²⁺ ions disrupts the disulfide bonds in keratin by reducing the sulfur in disulfide / by attracting the lone pair of electrons on S.
 (Ionic bonding ignored here as question specified S-S bonds in story).
 - (iv) Dilute acid / alkali and heat. Accept 6 mol $dm^{-3} H_2SO_4$.
- 5 (a) (i) At equilibrium, 2.0 moles NH_3 remaining, thus 3.0 moles of N_2 and 9.0 moles of H_2 in the vessel.

Thus
$$p_{NH3} = \frac{2}{14} p$$
, $p_{N2} = \frac{3}{14} p$, $p_{H2} = \frac{9}{14} p$
 $K_p = \frac{p_{NH_3}^2}{p_{N_2} \cdot p_{H_2}^3}$
 $= \frac{(\frac{2}{14}p)^2}{(\frac{3}{14}p) \cdot (\frac{9}{14}p)^3}$
 $= 5.33 \text{ atm}^{-2}$

Solving, p = 0.259 atm.

- (iii) At lower temperatures which favour the exothermic forward reaction to produce ammonia, the reaction would be too slow. Thus, a catalyst is used to increase the rate so that the yield of ammonia can remain high and rate of production is reasonable.
- (b) (i) Carbon monoxide contains a lone pair of electrons on C which forms a dative (coordinate) bond to Fe²⁺.
 - (ii) Vanadium and iron are both transition elements, with **partially filled d orbitals** that can accept dative bonds.
 - (iii) Mass of V in sea squirt = 100×10^{-3} mol dm⁻³ x 0.300 dm³ x 50.9 g mol⁻¹ = 1.527 g

Volume of seawater needed = $1.527 \text{ g} / 7.1 \times 10^{-6} \text{ g} \text{ L}^{-1}$ = $2.15 \times 10^5 \text{ L}$

Mass of seawater needed = $2.15 \times 10^5 \text{ L} \times 1.03 \text{ kg} \text{ L}^{-1}$ = $2.22 \times 10^5 \text{ kg}$

(c)	Reactions	Deductions
	S : $C_{10}H_{14}O + 2Br_2 \rightarrow T$: $C_{10}H_{14}OBr_4$	Electrophilic addition. S has 2 C=C bonds.
	Br ₂ decolourised	
	S insoluble in NaOH.	S does not contain phenol or COOH.
	S and T + Tollen's \rightarrow Ag(s)	Both S and T has aldehydes.
	S + hot KMnO ₄ \rightarrow U : C ₃ H ₄ O ₃ + V : C ₇ H ₁₀ O ₅	Oxidative cleavage of both C=C in S. At
		least 1 C=C in cyclic structure.
	$\mathbf{U} + \mathbf{I}_2 / \mathbf{OH}^- \rightarrow \mathbf{CHI}_3$	U contains CH ₃ -C=O ketone group.
		U is CH ₃ C(O)COOH (by structure).
	$U + CO_3^{2^-} \rightarrow CO_2$	U contains COOH. U is $CH_3C(O)COOH$.
	$V + \text{LiAlH}_4 \rightarrow \overset{HO}{\overset{H_3C}{\overset{H}{\overset{H}}{\overset{H_3C}{\overset{H_3C}{\overset{H_3C}{\overset{H_3C}{\overset{H_3C}{\overset{H_3C}{\overset{H_{}}{\overset{H_{}}{\overset{H_{}}{\overset{H_{}}{\overset{H_{}}{\overset{H}{H$	

S can be one of

And **T** the corresponding tetra-brominated product (add Br₂ across each C=C).

(d) (i) Aq NaOH, heat.

Phenylamide would produce effervescence, the gas turning moist red litmus blue, while N-phenyl methylamide would not.

 (ii) Either PCI₅ (white fumes for 1st compound) or Na metal (effervescence for 1st compound).