IJC H2 Preliminary Examination (Paper 2)

Qn/No	Topic Set	Answers
1,	Inequalities	$x < -1 \text{ or } -\frac{\sqrt{3}}{2} \le x < -\frac{3}{4} \text{ or } x \ge \frac{\sqrt{3}}{2};$
		$x < \ln\left(\frac{\sqrt{3}}{2}\right)$
2	AP and GP	(i)9 (iii) $x \ge 8755$
		(last part) Software Y is unable to remove
		all the comments because eventually it is
		only able to remove 150 000 comments.
3	Differential Equations	$5e^{\frac{1}{2}t}$
		(i) $x = \frac{5e^{\frac{1}{2}t}}{4 + e^{\frac{1}{2}t}}$
		(ii) $2\ln\left(\frac{8}{3}\right)$ years
		$(11) 2 \ln \left(\frac{1}{3}\right)$ years
		(iii) The population of wild boars will
		increase and stabilise at 500 eventually.
4	Vectors (Lines and Planes)	(i) $\theta = 67.8^{\circ}$
		(ii) $(-1,1,-3)$
		$\left(-2\right)$
		$\begin{pmatrix} -2 \\ 0 \\ A \end{pmatrix}$
		$\left(-4\right)$
		(-1) (4)
		(iv) $\mathbf{r} = \begin{pmatrix} -1 \\ 1 \\ -3 \end{pmatrix} + \alpha \begin{pmatrix} 4 \\ 1 \\ -2 \end{pmatrix}, \alpha \in \mathbb{R}$
ĺ		
		(3) (2)
5	Sampling Methods	(i) Systematic sampling (ii)(slower, more difficult to collect)
		Systematic sampling is a more tedious
		process to select the employees, whereas
		quota sampling is quick and easy.
6	Sampling distribution (Central Limit Theorem)	143
7	Probability	(i) 0.902
		(ii) 0.199
8	Hypothesis Testing	(i) 44.1; 3.52
		(ii) The battery life of a PI-99 calculator is assumed to be normally distributed.
-	TO AGEST STORT OF STREET OF STREET STREET STREET STREET STREET STREET STREET	assumed to be normany distributed.

		(iii) $H_0: \mu = k$ $H_1: \mu \neq k$ (iv) $\{k \in \square: 42.97 < k < 45.24\}$
9	Poisson Distribution	(i) The average number of faults detected by each system (for the track and the train) is constant from one day to another. (ii) 0.629 (iii) 8 (iv) 0.237
10	Binomial Distribution	(i) Ben's performance (i.e. whether he loses or wins) in a game is independent of any other games that he plays with Alex. (ii) 0.850 (iii) 14
11	Correlation & Regression	(iv) 0.910 (ii)(a) -0.8454 (ii)(b) -0.9961
		(iii) m and $\ln t$ is the better model; $m = 179 - 31.2 \ln t$ (iv) 22.61 micrograms per litre; The estimate obtained is reliable, because the given value of $t = 150$ lies within the given sample data range for t and the product moment correlation coefficient between m and $\ln t$ is very close to -1 , hence indicating a strong negative linear correlation between the variables m and $\ln t$.
12	Normal Distribution	(i) 0.809 (ii) 0.375 (last part) 0.916

Innova Junior College H2 Mathematics JC2 Preliminary Examinations Paper 2 Solutions

1	Solution	
	$\frac{3}{4x+3} \le \frac{x}{x+1}$ $\frac{3}{4x+3} - \frac{x}{x+1} \le 0$ $\frac{3x+3-4x^2-3x}{(4x+3)(x+1)} \le 0$ $\frac{-4x^2+3}{(4x+3)(x+1)} \le 0 (*)$ $\frac{4x^2-3}{(4x+3)(x+1)} \ge 0$ $\frac{(2x-\sqrt{3})(2x+\sqrt{3})}{(4x+3)(x+1)} \ge 0$	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Hence $x < -1$ or $-\frac{\sqrt{3}}{2} \le x < -\frac{3}{4}$ or $x \ge \frac{\sqrt{3}}{2}$,
	For $\frac{3}{4e^x + 3} > \frac{e^x}{e^x + 1}$, making use of the result in above part,	
	$-1 < e^x < -\frac{\sqrt{3}}{2}$ or $-\frac{3}{4} < e^x < \frac{\sqrt{3}}{2}$	
	(no solns since e ^x is always positive)	
	Hence, $e^x < \frac{\sqrt{3}}{2} \implies x < \ln\left(\frac{\sqrt{3}}{2}\right)$	

2	Solution			
(i)		The same of the same of	Control of the Control of Control	
	Hour	Start of hour	End of hour	1
	1	1	1 + 3 = 4	
	2	4	4 + 12 = 16	=
	3	16	16 + 48 = 64	-
	4	•••		
	4(4)"-	1 > 200 000		
		1 > 500000		
	` '			
		1 > 7.80482		
		n > 8.80842		¥ 1
	Numbe	er of complete hours	= 9	
	Altern	native Solution		
	4(4)	$^{-1} > 200000$		
	n	Total		
	8	65536 < 200 000		
	9	262144 > 200 000		
	10	11048576 > 200 00	0	
	Numb	er of complete hours	= 9	
(ii)			TO THE USE	Style and the st
	Day	Start of day	End of day	
	1	200000-x	1.02(200000-x)	
	2	l is	1.02[1.02(200000-x)]	
		1.02(200000-x)	$\begin{bmatrix} -x \end{bmatrix}$	
		-x	$=1.02^2(200000)$	
			$-1.02x - 1.02^2x$	
	3			
	A GARAGE			
	At the	end of day n, the nur	nber comments	

	$=1.02''(200000)-x\left(\frac{1.02(1.02''-1)}{0.02}\right)$
	=1.02"(200000)-51x(1.02"-1)
(iii)	$1.02^{30} (200000) - 51x(1.02^{30} - 1) < 0$
	$x > \frac{1.02^{30} (200\ 000)}{51(1.02^{30} - 1)}$
	$x \ge 8755$ (to nearest integer)
	Day 1: no. of comments removed = 15000
	Day 2: no. of comments removed $=15000(0.9)$
	Day 3: no. of comments removed = $15000(0.9)^2$
	As $n \to \infty$, no. of comments removed
	$=\frac{15000}{1-0.9}=150\ 000$
	Software Y is unable to remove all the comments because eventually it is only
	able to remove 150 000 comments.

3	Solution
(i)	Method 1:
	$\int \frac{1}{x(5-x)} dx = \int \frac{1}{10} dt(*)$
	$\int x(5-x) \int 10^{-x}$
	Doing partial fractions
	$\frac{1}{x(5-x)} = \frac{A}{x} + \frac{B}{5-x}$
	$=\frac{A(5-x)+B(x)}{x(5-x)}$
	x(5-x)
	$A=\frac{1}{5}$
	$B=\frac{1}{5}$
	5
	$\int \frac{1}{5x} + \frac{1}{5(5-x)} dP = \int \frac{1}{10} dt$
	15 1
	$\left \frac{1}{5} \left[\ln x - \ln 5 - x \right] \right = \frac{1}{10}t + c$
	, x 1
	$ \ln\left \frac{x}{5-x}\right = \frac{1}{2}t + c $
	$x = \frac{1}{2}t$
	$\frac{x}{5-x} = Ae^{\frac{1}{2}t}, \text{ where } A = \pm e^c$
	Given $x = 1$ when $t = 0$, $\frac{1}{5 - 1} = Ae^0 \implies A = \frac{1}{4}$
	$x = \frac{5}{4}e^{\frac{1}{2}t} - \frac{1}{4}xe^{\frac{1}{2}t}$
	$x = \frac{1}{4}c - \frac{1}{4}xc$
	$x(4+e^{\frac{1}{2}t})=5e^{\frac{1}{2}t}$
	$x(4+e^{-}) = 3e^{-}$
	$x = \frac{5e^{\frac{1}{2}t}}{4 + e^{\frac{1}{2}t}}$
	$4 + e^{\overline{z}'}$

(2)	Mathod 2:
(i)	Method 2:
	$\int \frac{1}{x(5-x)} dx = \int \frac{1}{10} dt(*)$
	$\int \frac{1}{\frac{25}{4} - (x - \frac{5}{2})^2} dx = \int \frac{1}{10} dt$
	4 2
	$\left \frac{1}{2\left(\frac{5}{2}\right)} \ln \left \frac{\frac{5}{2} + \left(x - \frac{5}{2}\right)}{\frac{5}{2} - \left(x - \frac{5}{2}\right)} \right = \frac{1}{10}t + c$
	$2(\frac{5}{2}) \left \frac{5}{2} - (x - \frac{5}{2})\right 10$
	$\ln\left \frac{x}{5-x}\right = \frac{1}{2}t + c$
	$\left \frac{111}{5-x} \right = \frac{1}{2}t + c$
	$\frac{x}{5-x} = Ae^{\frac{1}{2}t}$, where $A = e^{\pm c}$
	$\frac{1}{5-x} = Ae^2$, where $A = e^{-x}$
	Given $x = 1$ when $t = 0$, $\frac{1}{5-1} = Ae^0 \implies A = \frac{1}{4}$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$x = \frac{5}{4}e^{\frac{1}{2}t} - \frac{1}{4}xe^{\frac{1}{2}t}$
	4 4
	$x(4 + e^{\frac{1}{2}t}) = 5e^{\frac{1}{2}t}$
,	$x = \frac{5e^{\frac{1}{2}t}}{4 + e^{\frac{1}{2}t}}$ or $x = \frac{5}{4e^{-\frac{1}{2}t} + 1}$
(::)	446 16 11
(ii)	When $x = 2$, $\frac{5e^{\frac{1}{2}t}}{4+e^{\frac{1}{2}t}} = 2$
	4+6.
	$8 + 2e^{\frac{1}{2}t} = 5e^{\frac{1}{2}t}$
,	$3e^{\frac{1}{2}t}=8$
	$e^{\frac{1}{2}t} = \frac{8}{3}$
	T
	$t = 2\ln\left(\frac{8}{3}\right)$
	(3)
	It takes $t = 2 \ln \left(\frac{8}{3} \right)$ years.
(iii)	As $t \to \infty$, $x \to 5$ The population of wild boars will increase and stabilise at
	500 eventually.

4	Solution
(i)	
	l: $\mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ -7 \end{pmatrix} + \lambda \begin{pmatrix} -2 \\ 1 \\ 4 \end{pmatrix}$, where λ is a real parameter.
	$p: \mathbf{r} \bullet \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = 2$
	$\sin \theta = \frac{\begin{vmatrix} -2 \\ 1 \\ 4 \end{vmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ -1 \end{vmatrix}}{\begin{vmatrix} -2 \\ 1 \end{vmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{vmatrix}} = \frac{6}{\sqrt{21}\sqrt{2}}$
	4 -1
	$\therefore \theta = 67.8^{\circ} \text{ (1 dec pl)}$
(ii)	For the point of intersection between <i>l</i> and <i>p</i> ,
	$(1-2\lambda)(1)$
	$\begin{pmatrix} 1-2\lambda \\ \lambda \\ -7+4\lambda \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = 2$
1	
	$1-2\lambda+7-4\lambda=2$ $\lambda=1$
	The position vector of point of intersection is $\begin{pmatrix} 1 \\ 0 \\ -7 \end{pmatrix} + \begin{pmatrix} -2 \\ 1 \\ 4 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ -3 \end{pmatrix}$.
	Coordinates of point of intersection are $(-1,1,-3)$.
(ii	The line perpendicular to p passing through $(1,0,-7)$ is
	$\mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ -7 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \ \mu \in \mathbb{R}$
	$\begin{pmatrix} 1+\mu \\ 0 \\ -7-\mu \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = 2$
	$1 + \mu + 7 + \mu = 2$

		$2\mu = -6$ $\mu = -3$ $\overrightarrow{ON} = \begin{pmatrix} 1-3 \\ 0 \\ -7+3 \end{pmatrix} = \begin{pmatrix} -2 \\ 0 \\ -4 \end{pmatrix}$
1		$\mu = -3$
		$\rightarrow \begin{pmatrix} 1-3 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix}$
		ON =
		$\left(-7+3\right)\left(-4\right)$
	(iv)	Method 1:
		Let the coordinates of A be $(1,0,-7)$.
		Let A' be the reflected point of A in p .
		Using ratio theorem, $\overrightarrow{ON} = \frac{\overrightarrow{OA} + \overrightarrow{OA'}}{2}$
		Osing ratio theorem, $ON = \frac{1}{2}$
		$\Rightarrow \overrightarrow{OA'} = 2\overrightarrow{ON} - \overrightarrow{OA} = 2 \begin{pmatrix} -2 \\ 0 \\ -4 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ -7 \end{pmatrix} = \begin{pmatrix} -5 \\ 0 \\ -1 \end{pmatrix}$
		$\Rightarrow OA = 2ON - OA = 2 \begin{vmatrix} 0 \\ -A \end{vmatrix} - \begin{vmatrix} 0 \\ -7 \end{vmatrix} = \begin{vmatrix} 0 \\ -1 \end{vmatrix}$
		The reflected line contains the point A' and point of intersection between l and p .
		$\begin{pmatrix} -1 \end{pmatrix} \begin{pmatrix} -5 \end{pmatrix} \begin{pmatrix} 4 \end{pmatrix}$
		The direction vector of the reflected line is $\begin{pmatrix} -1\\1\\-3 \end{pmatrix} - \begin{pmatrix} -5\\0\\-1 \end{pmatrix} = \begin{pmatrix} 4\\1\\-2 \end{pmatrix}$
		$\begin{pmatrix} -1 \\ 1 \end{pmatrix}$, $\alpha \in \mathbb{R}$
		$\therefore \mathbf{r} = \begin{pmatrix} -1 \\ 1 \\ -3 \end{pmatrix} + \alpha \begin{pmatrix} 4 \\ 1 \\ -2 \end{pmatrix}, \alpha \in \mathbb{R}$
	(:-)	Method 2:
	(iv)	Let the coordinates of A be $(1,0,-7)$. Let A' be the reflected point of A in p. Let
		the coordinates of B be $(-1,1,-3)$.
		$\rightarrow \rightarrow \rightarrow$
		$\overrightarrow{BN} = \frac{\overrightarrow{BA} + \overrightarrow{BA'}}{2}$
		$ \rightarrow \xrightarrow{BA'} \rightarrow \rightarrow$
		$ = 2 \begin{pmatrix} -2 \\ 0 \\ -4 \end{pmatrix} - 2 \begin{pmatrix} -1 \\ 1 \\ -3 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ -7 \end{pmatrix} + \begin{pmatrix} -1 \\ 1 \\ -3 \end{pmatrix} = \begin{pmatrix} -4 \\ -1 \\ 2 \end{pmatrix} $
		$\therefore \mathbf{r} = \begin{pmatrix} -1 \\ 1 \\ -3 \end{pmatrix} + \alpha \begin{pmatrix} -4 \\ -1 \\ 2 \end{pmatrix}, \alpha \in \mathbb{R}$
		(-3) (2)

5	Solution			
(i)	Systematic sampling			
(ii)	(slower, more difficult to collect) Systematic sampling is a more tedious process to select the employees, whereas quota sampling is quick and easy.			
	Another possible reason: might miss out a certain group of people due to different reporting times.			
(iii)	The interviewer cou	ld consider transpo	rt mode of the emple	oyees as the stratum. A
	possible quota for ea	ach stratum is as fo	llows:	
By private By public By		D 11:]	
	transport	transport	By walking	
1	10	10	10	1
The interviewer can then stand at the entrance of the building and sample until the above quota is met.			ouilding and select the	

6	Solution	
	E(X) = 1.93 Var(X) = 1.4	
	Since n is large, by Central Limit Theorem,	
	$\overline{X} \sim N\left(1.93, \frac{1.4}{n}\right)$ approximately.	
	Given that $P(\overline{X} > 2) < 0.24 (*)$	
-	Method 1: Using GC to set up table	
	when $n = 142$, $P(\overline{X} > 2) = 0.24041 \ (> 0.24)$	
	when $n = 143$, $P(\overline{X} > 2) = 0.23964$ (< 0.24)	
	when $n = 144$, $P(\overline{X} > 2) = 0.23887 (< 0.24)$	
	\therefore least n is 143.	
	Method 2: Using algebraic method via standardization	
	$P(\overline{X} \le 2) > 0.76$	
	$P\left(Z \le \frac{2-1.93}{\sqrt{1.4/n}}\right) > 0.76$	

From GC,

$$\frac{2-1.93}{\sqrt{1.4/n}} > 0.70630 \quad ---(**)$$

$$\sqrt{n} > \frac{0.70630}{0.07} \sqrt{1.4}$$

$$\sqrt{n} > 11.939$$

$$n > 142.53$$

$$\therefore \text{ least } n \text{ is } 143.$$

	.7	Solution		
	(i)	Method 1:		
		Required probability		
		$=1 - \frac{{}^{13}C_4}{{}^{24}C_4} - \frac{{}^{11}C_4}{{}^{24}C_4} = 0.902 \text{ (3 sig fig)}$		
		$=1-\frac{24}{24C}-\frac{4}{24C}=0.902$ (3 Sig 11g)		
		C_4 C_4		
1				
		Method 2:		
		Required probability		
		$=1 - \frac{13 \times 12 \times 11 \times 10}{24 \times 23 \times 22 \times 21} - \frac{11 \times 10 \times 9 \times 8}{24 \times 23 \times 22 \times 21} = 0.902 \text{ (3 sig fig)}$		
1		$=1-\frac{24\times23\times22\times21}{24\times23\times22\times21}$		
		Method 3:		
		Required probability		
1		$= \frac{{}^{11}C_{1} \times {}^{13}C_{3} + {}^{11}C_{2} \times {}^{13}C_{2} + {}^{11}C_{3} \times {}^{13}C_{1}}{{}^{24}C_{4}}$		
		= 0.902 (3 sig fig)		
	(ii)	Method 1:		
		Required probability		
		$= \frac{{}^{11}C_2 \times 2! \times {}^{22}C_2 \times 2!}{{}^{24}C_4 \times 4!} = 0.199 \text{ (3 sig fig)}$		
	7	$=\frac{2^4C_4\times 4!}{2^4C_4\times 4!}$		
		Method 2:		
		Required probability		
		• •		
		$= \frac{11 \times 10 \times 22 \times 21}{24 \times 23 \times 22 \times 21} = 0.199 \text{ (3 sig fig)}$		

8	Solution
(i)	Unbiased estimate of the population mean
7 17 1	$\overline{x} = \frac{573.39}{13} = 44.10692308 = 44.1 (3 \text{ s.f.})$
	Unbiased estimate of the population variance
unit specie e	$s^2 = \frac{42.22}{12} = 3.518333333 = 3.52 $ (3 s.f.)
(ii)	The battery life of a PI-99 calculator is assumed to be normally distributed.
(iii)	Let X be the r.v. denoting the battery life of a randomly chosen PI-99 calculator.
	Let μ be the population mean battery life of the PI-99 calculators.
	$H_0: \mu=k$
	$H_1: \mu \neq k$
	where H_0 is the null hypothesis and H_1 is the alternative hypothesis.
(iv)	To test at 5% level of significance.
	Under H_0 , the test statistic is $T = \frac{\overline{X} - k}{\frac{S}{\sqrt{13}}} \sim t_{(12)}$.
	Since the null hypothesis is not rejected, t -value falls outside critical region. \therefore -2.178812 < t - value < 2.178812
	$-2.178812 < \frac{\overline{x} - k}{\frac{s}{\sqrt{13}}} < 2.178812 (*)$
The state of the s	$\overline{x} - 2.178812 \left(\frac{s}{\sqrt{13}} \right) < k < \overline{x} + 2.178812 \left(\frac{s}{\sqrt{13}} \right)$
	where $\bar{x} = 44.10692$ and $s = \sqrt{3.51833}$
	\therefore 42.97 < k < 45.24
	The required set is $\{k \in \square : 42.97 < k < 45.24\}$
	7.1

9	Solution
(i)	The average number of faults detected by each system (for the track and the train)
47	is constant from one day to another.
(ii)	Let X be the r.v. denoting the total number of faults detected by the two systems in
	a periods of 10 days.
	$X \sim \text{Po}((0.25 + 0.15) \times 10)$, i.e. $X \sim \text{Po}(4)$
	$\therefore P(X \le 4) = 0.6288369 = 0.629 \text{ (3 sig fig)}$
(iii)	Let Y be the r.v. denoting the total number of faults detected by the two systems in
	a period of n days.
	$Y \sim \text{Po}(0.4n)$
	Given $P(Y = 0) < 0.05$,
	Method 1: Algebraic method
	$e^{-0.4n} < 0.05$ (o.e. $(e^{-0.25n})(e^{-0.15n}) < 0.05$)
1	n > 7.489
	: the smallest number of days required is 8.
-	Method 2: GC table
	When $n = 7$, $P(Y = 0) = 0.06081 (> 0.05)$
	When $n = 8$, $P(Y = 0) = 0.04076 \ (< 0.05)$
	When $n = 9$, $P(Y = 0) = 0.02732 (< 0.05)$
1	:. the smallest number of days required is 8.
(iv	Let W and V be the r.v. denoting the number of faults detected on the track and on
	the track in a period of 10 days respectively.
	$W \sim \text{Po}(2.5)$ and $V \sim \text{Po}(1.5)$
	Required probability
	$= P(W \ge 3 \mid V + W \le 4)$
	$= \frac{P(W \ge 3 \cap V + W \le 4)}{P(V + W \le 4)}$
	$= \frac{P(W=3)P(V=0) + P(W=3)P(V=1) + P(W=4)P(V=0)}{P(V+W \le 4)}$
	$= \frac{P(W=3)P(V \le 1) + P(W=4)P(V=0)}{P(V+W \le 4)}$
	= 0.237 (3 sig fig)

10	Solution
(i)	Ben's performance (i.e. whether he loses or wins) in a game is independent of any
()	other games that he plays with Alex.
(ii)	Let X be the r.v. denoting the number of games that Ben loses out of 10 games.
	$X \sim B(10, 0.7)$
	$P(X > 5) = 1 - P(X \le 5)$
	=0.84973
	$\approx 0.850 (3 \text{ sig fig})$
(iii)	Let Y be the r.v. denoting the number of games that Ben loses out of n games.
	$Y \sim B(n, 0.3)$
11	$P(Y > 8) \le 0.01$
	$1 - P(Y \le 8) \le 0.01$
	Using GC,
	When $n = 13$, $P(Y > 8) = 0.00403$ (< 0.01)
	When $n = 14$, $P(Y > 8) = 0.00829$ (< 0.01)
	When $n = 15$, $P(Y > 8) = 0.01524 (> 0.01)$
	\therefore the greatest value of n is 14.
(iv)	Let W be the r.v. denoting the number of games that Ben loses out of 50 games.
7, 5,11	$W \sim \mathrm{B}(50,0.3)$
	As $n = 50$ is large, $np = 15 (> 5)$ and $nq = 35 (> 5)$,
	$\therefore W \sim N(15, 10.5) \text{ approximately}$
	$P(10 \le W \le 20) = P(9.5 \le W \le 20.5)(*)$
	= 0.910 (3 sig fig)
	= 0.910 (3 Sig lig)

11	Solution
(i)	85. $\frac{1}{20}$ $\frac{1}{250}$ From the scatter diagram, a curvinlinear correlation is observed between m and t (i.e. as t increases, m decreases at a decreasing rate), and hence a linear model with equation of the form $m = a + bt$ cannot be used to model the relationship
(;;)	between m and t.
(ii) (a)	Product moment correlation coefficient between m and $t^2 = -0.8454$.
(b)	Product moment correlation coefficient between m and $\ln t = -0.9961$.
(iii)	Since the absolute value of the correlation coefficient between m and $\ln t$ (i.e. case (b)) is <u>closer</u> to 1, this indicates that the linear correlation between the variables m and $\ln t$ is <u>stronger</u> as compared to that between the variables for case (a). \therefore case (b) is the better model for the relationship between m and t .
	$m = 179.026 - 31.2175 \ln t$ $\Rightarrow m = 179 - 31.2 \ln t \text{ (3 sig fig)}$
(iv)	When $t = 150$, $m = 179.026 - 31.2175 \ln 150 = 22.61$ (2 dec pl) The estimate obtained is reliable, because the given value of $t = 150$ lies within the given sample data range for t and the product moment correlation coefficient between t and t is very close to t and t is very close to t and t in t is very close to t and t in t and t is very close to t and t in t in t and t in

12	Solution
(i)	$X + Y \sim N(50, 32.65)$
	P(X+Y>45) = 0.809224 = 0.809 (3 sig fig)
(ii)	E(X+Y-S)=12
	Var(X+Y-S) = 39.41
	$X + Y - S \sim N(12, 39.41)$
	P(method A is faster than method B by more than 5 mins)
	= P(S+15-(X+Y)>5)
	= P(X+Y-S<10)
	= 0.375020 = 0.375 (3 sig fig)
(iii)	Let $A = X + Y$ and $B = S + 15$.
	$A \sim N(50, 32.65)$ and $B \sim N(53, 2.6^2)$
	Let $W = \frac{A_1 + A_2 + A_3 + A_4 + B_1 + \dots + B_6}{10}$
	$E(W) = \frac{50 \times 4 + 53 \times 6}{10} = 51.8$ $Var(W) = \frac{32.65 \times 4 + 2.6^2 \times 6}{10^2} = 1.7116$
	& $Var(W) = \frac{32.65 \times 4 + 2.6^2 \times 6}{10^2} = 1.7116$
	$W \sim N(51.8, 1.7116)$
	Required probability $= P(W > 50)$
200	= 0.915566 = 0.916 (3 sig fig)
Park or a	