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Mathematical Formulae 

 

1. ALGEBRA 

 

Quadratic Equation 

 For the equation 02 =++ cbxax ,   
2( 4 )

2

b b ac
x
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= . 

 

Binomial Expansion 
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where n is a positive integer and 
( )

! ( 1) ( 1)

! ! !

n n n n n r

r r n r r

  − − +
= = 

− 
 

 

 

2. TRIGONOMETRY 

Identities 

sin2 A + cos2 A = 1 

sec2 A = 1 + tan2 A 

cosec2 A = 1 + cot2 A 

BABABA sincoscossin)sin( =  

BABABA sinsincoscos)cos( =  

BA

BA
BA

tantan1

tantan
)tan(




=  

AAA cossin22sin =  

AAAAA 2222 sin211cos2sincos2cos −=−=−=  

A

A
A

2tan1

tan2
2tan

−
=  

Formulae for ABC 

A

a

sin
 = 

B

b

sin
 = 

C

c

sin
 

a2 = b2 + c2 − 2bc cos A 

 = 
2

1
bc sin A 
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1 Express 
( )( )

2

2

2 19

1 3

x x

x x

+ −

− +
 as a sum of three partial fractions. [5] 

  

( )( ) ( ) ( )

2

2 2

2 19

1 31 3 3

x x A B C

x xx x x

+ −
= + +

− +− + +
        [M1 

                                                                            

 

( ) ( )( ) ( )
22 2 19 3 1 3 1x x A x B x x C x+ − = + + − + + −       [M1] 

 

Sub 1x = , 16 16A− =                         
                      1A = −                         [A1] 

 

Sub 3x = − , 16 4C− = −                      
                        4C =                           [A1] 

 

Sub 0x = , 19 9 3A B C− = − −                          
Sub 1A = − , 4C = , 19 9 3 4B− = − − −               
                                     2B =                          [A1] 

 

( )( ) ( ) ( )

2

2 2

2 19 1 2 4

1 31 3 3

x x

x xx x x

+ −
= − + +

− +− + +
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2 The table below shows experimental values of two variables x and y. 

 

x 2 4 6 8 

y 8.48 5.99 4.90 4.24 

 

It is known that x and y are connected by the equation 
nyx k= , where k and n are 

constants. 
 

 

 (a) Plot ln y  against ln x , using a scale of 4 cm for 1 unit on both axes, for the 

given data and draw a straight line graph on the grid on page 5. 

 

[2] 

 (b) Use your graph to estimate the value of n and of k. [3] 

   

ln lnnyx k=  

ln ln lny n x k+ =  

ln ln lny n x k= − +                [M1] 

2.5 0.95

0 3
n

−
− =

−
 

31

60
n =            Accept 0.517 0.1                   [B1] 

 

ln 2.5k =  

12.2k =           Accept 12.2 1.2k =               [B1] 

 

 

 (c) Use your graph to estimate the value of x when 
2y e= . [2] 

   

( )2ln 2e =  

Draw 2Y =                      [M1] 

From graph, ln 1x =  

                         x e=       [A1] 
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 (d) On the same diagram, draw the straight line representing the equation 
3y x=  

and hence find the value of x for which 3 nx k+ =  

 
[3] 

   
3y x=  

Draw ln 3lny x=                  [B1 – line] 

 
3 nx k+ =  

( )3 ln lnn x k+ =  

3ln ln lnx n x k+ =  

3ln ln lnx n x k= − +                  [M1] 

3ln lnx y=  

0.7ln 0.7x x e =  =     Accept 2.01       [A1] 

 

 

 

 

 

0 1 
 

2 3 

1 

2 

3 

 

 
 

 

B1 – Straight line through correct points plotted 

ln x  0.69 1.39 1.79 2.08 

ln y  2.14 1.79 1.59 1.44 

B1 - Correct table 

(c) 

(d) 
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3 The diagram shows part of the curve 
( )

2

9
1

3
y

x
= −

−
 which intersects the x-axis at 

the origin and at the point P. The normal at the point Q on the curve cuts the x-axis 

at R. The gradient of the curve at Q is 18. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (a) Find the coordinates of Q. [3] 

  

( )
2

9
1

3
y

x
= −

−
 --- (1) 

( )
3

18

3

dy

dx x
=

−
                    [M1] 

( )
3

18
18

3 x
=

−
                    [M1] 

( )
3

3 1x− =  

2x =  

Sub 2x =  to (1) 

( )
2

9
1 8

3 2
y = − =

−
         

( )2,8Q                            [A1] 

 

 

  

y  

x  

Q 

P 

R 
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 (b) Find the coordinates of R. [3] 

  
Gradient of QR 

1

18
= −                       [B1] 

Sub ( )2,8 , ( )
1

8 2
18

y x− = − −          [M1] 

1 73

18 9
y x= − +  

Sub 0y =  

1 73
0

18 9
x= − +                 

146x =  

( )146,0R                           [A1] 

 

 

 

 

 

 

 

 

 (c) Find the area of the shaded region. [4] 

  
Sub 0y = , 

( )
2

9
0 1

3 x
= −

−
 

( )
2

3 9x− =  

3 3x =   

0,6x =  

( )6,0P                                                           [B1] 

 

( )

2

20

29 9
1 4

033
dx x

xx

 
− = − = − −

              [B1] 

( )( )
1

8 146 2 576
2

− =  

( )

146

26

1469 9 19600
1

63 1433
dx x

xx

 
− = − = − − −

           [B1] 

Shaded area 
19600

4 576 717
143

= + + = unit2 (3 s.f)       [A1] 
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4 

 

(a) The equation of a curve is ( ) ( )2 22 4 8y b ac x a c x= − + + − .  
  

(i) Show that the roots of the equation are real if a, b and c are real. [3] 
  

  

Discriminant ( ) ( )( )
2 24 4 2 8a c b ac= + − − −                   [M1] 

                     2 2 216 32 16 32 64a ac c b ac= + + + −  

                     2 2 216 32 16 32a ac c b= − + +  

                     ( )2 2 216 2 32a ac c b= − + +  

                     ( )
2 216 32a c b= − +                               [A1] 

For all real values of a, b and c, ( )
2

0a c−  , 
2 0b   

Since Discriminant ( )
2 216 32 0a c b= − +  , therefore roots are real. 

                                                                                            [A1] 

 

  

(ii) State the conditions that the roots are equal. [2] 
  

  

Discriminant ( )
2 216 32 0a c b= − + =  

0a c− =  

a c=                      [B1] 

 
232 0b =  

0b =                      [B1] 

 

 

 (b) The equation of a curve is 2 4 3mx x m− + − , where m is a constant. 

Find the range of values of m for which 2 4 3mx x m− + −  is not negative for 

all real values of x. 

 

 

[5] 

   
2 4 0b ac−   

( ) ( )( )
2

4 4 3 0m m− − −         [M1]  

216 4 12 0m m− +              
24 12 16 0m m− −   

2 3 4 0m m− −                     

( )( )4 1 0m m− +                [M1]                                                            [M1] 

1m  −  or 4m                      [M1] 

 

Since curve is not negative, it must be U-shaped, hence m must be positive. 

Therefore, 4m                   [A1] 

 

 

 

 

   
 

 

-1 4 
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5 

 
 

(a) Show that 
3 1

1
1 3 1 3

x

x x
= −

− −
 and hence find 

3

1 3

x
dx

x−
. 

 

[4] 

   

3 1
1

1 3 1 3

x

x x
= −

− −
              [B1] 

 

3 1
1

1 3 1 3

x
dx dx

x x
= −

− −   

                  ( )
1

ln 1 3
3

x x c= − − − +     [B3 – minus 1 for each error, needs +c] 

                           

 

 

  

(b) Given that ( )ln 1 3y x x= − , find an expression for 
dy

dx
. 

 

[2] 

   

( )
3

ln 1 3
1 3

dy
x x

dx x

− 
= + − 

− 
      [M1 for correct 

dv
u

dx
 or 

du
v

dx
] 

     ( )
3

ln 1 3
1 3

x
x

x

−
= + −

−
            [A1] 

 

 

 

 

 
 

(c) Using the results from (a) and (b), find ( )
0

1
ln 1 3x dx

−
− . [4] 

   

( ) ( )
3

ln 1 3 ln 1 3
1 3

d x
x x x

dx x

−
− = + −   −

 

( ) ( )
3

ln 1 3 ln 1 3
1 3

x
x dx dx x x

x
− = + −

−                           [M1] 

( ) ( ) ( )
1

ln 1 3 ln 1 3 ln 1 3
3

x dx x x x x− = − − − + −         [M1] 

( ) ( ) ( )
0

1

01
ln 1 3 ln 1 3 ln 1 3

13
x dx x x x x

−

 
− = − − − + −  − 

              

                          ( )
1

0 ln 4 1 1 ln 4
3

  
= − − + + −  

  
                    [M1] 

                          
4

ln 4 1
3

= −                   [A1] 
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6 In Figure 1, 3AE = cm and angle BAE x= . Triangle ABE is cut and rotated 

clockwise about E until AE rests on ED. The resulting shape is shown in Figure 2 

below. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 (a) Show that the perimeter, P cm of the resulting shape BEBADCB is given by

14sin 8cos 2P x x= + +   

 

[4] 

   

sin
3

BE
x =  

3sinBE x=                

cos
3

AB
x =  

3cosAB x=                 [B1 – correct BE or AB] 

sin
3 5

CD
x =

+
 

8sinCD x=                       

cos
3 5

AC
x =

+
 

8cosAC x=                                           [B1 – correct CD or AC] 

8cos 3cos 5cosBC x x x= − =                     

8 3 3 2AD = − − =                                   [B1 – correct BC or AD] 

 

3sin 3sin 3cos 2 8sin 5cosP x x x x x= + + + + +              

    14sin 8cos 2x x= + +  (shown)                                        [A1] 

 

 

  

Figure 1 Figure 2 

A 

 

B 

 

 

C 

3 cm 

5 cm 

E 

D 

B        E         B 

C D 

A 
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 (b) Express 14sin 8cos 2x x+ +  in the form of sin ( ) 2R x + + , where 0R   

and 0 90    .  

Hence find the maximum value of 14sin 8cos 2x x+ + . 

 

[4] 

   

14sin 8cos 2 sin ( ) 2x x R x + + = + +  

( ) ( )
2 2

14 8 260R = + =           [B1] 

8
tan

14
 =                                   [M1] 

29.745 29.7 =  =   (1d.p) 

 

14sin 8cos 2 260 sin ( 29.7 ) 2x x x+ + = +  +                             [A1] 

 

Max 14sin 8cos 2x x+ + when sin ( 29.7 ) 1x +  =  

Max 14sin 8cos 2x x+ + 260 2= +                                  [B1] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (c) Find the value of x for which P = 15 cm. [2] 

   

260 sin ( 29.745 ) 2 15x +  + =  

13
sin ( 29.745 )

260
x +  =               [M1] 

Basic angle 53.729=   

 
29.745 53.729 ,180 53.729x+  =  −   

24.0 ,96.5x =    (rej)                                       [A1] 
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7 The equation of a curve is 
2 34 xy x e−= .  

 
 

(a) Find an expression for 
dy

dx
 and obtain the exact value of the coordinates of 

the stationary points of the curve. 

 

 

[6] 

 
 

 

( )2 3 34 3 8x xdy
x e xe

dx

− −= − +     [M1] 

      ( )3 28 12xe x x−= −       *   

      ( )34 2 3xxe x−= −         *  [A1 for either *] 

 

0
dy

dx
=                               

( )34 2 3 0xxe x− − =           [M1] 

2
0,

3
x x= =                      [A1] 

Sub 0x = , 0y =  

Sub 
2

3
x = , 

2 2
3

3

2

2 16
4

3 9
y e

e

 
−  
  

= = 
 

              

Stationary points are ( )0,0  and 
2

2 16
,

3 9e

 
 
 

        [A1A1] 

 

 

  

(b) Find an expression for 
2

2

dx

yd
 and hence the nature of these stationary points. 

 

[5] 

 
 

 

( ) ( ) ( )
2

3 3 2

2
8 24 3 8 12x xd y

e x e x x
dx

− −= − + − −             [M1] 

        ( )3 24 2 12 9xe x x−= − +                         [A1] 

Sub 0x = , 
( ) ( ) ( )

2
23 0

2
4 2 12 0 9 0 8 0

d y
e

dx

−  = − + = 
 

        [M1] 

 

Sub 
2

3
x = , 

222 3
3

2 2

2 2 2
4 2 12 9 0

3 3

d y
e

dx e

 
−  
 

    
= − + = −     

     

    [M1] 

( )0,0  is Minimum point and 
2

2 16
,

3 9e

 
 
 

 is Maximum point.     [A1] 
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8 ( )6,4D − , ( )2,4E  and F are three points on a circle with radius 5 units. 

The normal to the circle at F passes through E. 

 

 (a) Explain why EF is a diameter of the circle.  [1] 

 

  

EF is the normal at F. Hence EF is perpendicular to the tangent at F. 

Since rad⊥ tan and E lies on the circle, hence EF is a diameter of circle. [B1]  

 

 

 (b) The centre of the circle is above DE. Find the equation of the circle. [4] 

  

 

Midpoint of ( )
6 2 4 4

, 2, 4
2 2

DE
− + + 

= = − 
 

            [M1] 

x-coordinate of centre of circle 2= −  

Let coordinates of centre of circle be ( )2, y−  

Radius 5=  
5OE =  

( ) ( )
2 2

2 2 4 5y+ + − =                     [M1] 

216 16 8 25y y+ − + =  
2 8 7 0y y− + =  

( )( )7 1 0y y− − =  

7, 1y y= = (rej since centre is above DE)            [A1] 

 

circle center be ( )2,7C −  

Equation of circle is ( ) ( )
2 2

2 7 25x y+ + − =            [A1] 

 

 

 
 

(c) Find the coordinates of F. [2] 

 

 

 

Let coordinates of F be ( ),x y  

( )
2 4

, 2,7
2 2

x y+ + 
= − 

 
               [M1] 

2
2

2

x +
= −  

6x = −  
4

7
2

y +
=  

10y =  

 

( )6,10F −                      [A1] 
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(d) Find the equation of the tangent at F. [3] 

 

 

 

Gradient of 
10 4 3

6 2 4
EF

−
= = −
− −

            [M1] 

Gradient of tangent at 
4

3
F =  

Equation of tangent at F is ( )
4

10 6
3

y x− = +        [M1] 

4
18

3
y x= +                                 [A1] 

 

 

 

 

 

 

 

 

 

 
 

(e) Find the coordinates of the two points on the circle which has zero gradient. [2] 

 

 

 

The two points whose gradient is zero are at the extreme top of the circle and 

the extreme bottom of the circle => the x-coordinate of these two points is 

2− . 

 

Hence: ( ) ( )
2 2

2 2 7 25y− + + − =                  

                         7 25y − =   

        12, 2y y= =  

Therefore the coordinates of the two required points are  

( )2,2− ,   [B1] 

( )2,12− .   [B1] 
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9 
 

(a) By using the substitutions 2x a=  and 5x b= , show that the equation 

4 25 1

10 4 2

x x

x x

−
=

+
 can be simplified to 2a b= , where a b − . 

 
 

[4] 

   

( ) ( )

( )( ) ( )

2 2

2

2 5 1

22 5 2

x x

x x x

−
=

+
            [M1] 

2 2

2

1

2

a b

ab a

−
=

+
 

2 2 22 2a b ab a− = +                   [M1] 
2 22 0a ab b− − =  

( )( )2 0a b a b+ − =                  [M1] 

2a b=  (shown) or a b= −  (rej)        [A1] 

 

 

 

 

 (b) Solve the equation 18log2log2 2 −=− xx . [5] 

   

18log2log2 2 −=− xx  

1
log

8log2
log2

2

2
2 −=−

x
x                   [M1] 

( )
1

log

32
log2

2

2 −=−
x

x  

Let xu 2log=  

1
6

2 −=−
u

u                                   [M1] 

062 2 =−+ uu  

( )( ) 0232 =+− uu                         [M1] 

2

3
=u            or      2−=u  

2

3
log2 =x     or      2log2 −=x   [M1] 

2

3

2=x           or      22−=x  

22=x       or      
4

1
=x              [A1] 
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(c) Show that the equation ( ) ( )2 2log 2 6 log 2 2x x− − − =  has no real solutions. [3] 

   

( ) ( )2 2log 2 6 log 2 2x x− − − =  

2

2 2

2 6
log log 2

2

x

x

−
=

−
              [M1] 

2 6
4

2

x

x

−
=

−
 

2 6 4 8x x− = −                       [M1] 

1x =  

Sub 1x =  to ( )2log 2x − , ( ) ( )2 2log 1 2 log 1− = − = undefined. 

Hence no real solution.            [A1] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

End of Paper 


