Comments

Students must remember that r and h are variables and not constants. When performing implicit

differentiation on the

variables with respect to r, h or t, you must

have your  $\frac{dh}{dr}$  or  $\frac{dr}{dt}$  etc.

Do remember to

substitute the given conditions after differentiation and not

before differentiation!

Differentiate w.r.t. 1:

thet  $A = \pi r \sqrt{r^2 + h^2}$ . I quale both 11 des  $A^2 = \pi^2 r^2 (r^2 + h^2)$ 

Since  $r \neq 0$ ,  $\left(2r^2 + h^2\right) \frac{dr}{dt} + hr \frac{dh}{dt} = 0$ 

 $\Rightarrow \left(\frac{dh}{dt}\right) \div \left(\frac{dr}{dt}\right) = \frac{2r^2 + h^2}{-hr}$ 

When x = 4,  $\sec \theta = 2 \Rightarrow \cos \theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{3}$ 

 $\int_{1}^{4} \frac{1}{x} \sqrt{(x^2-4)} dx$ 

 $r^{2}\left(2r\frac{dr}{dt}+2h\frac{dh}{dt}\right)+\left(r^{2}+h^{2}\right)\left(2r\frac{dr}{dt}\right)=0$ 

(Note:  $\frac{dA}{dt} = 0$  since A is a constant)

## RAFFLES INSTITUTION H2 Mathematics (9758) 2017 Year 6

## 2017 H2 Math 9758 Preliminary Examination Paper 1: Suggested Solutions

| Qn  | 在中心的时间,他们是他的对象。这种的                                                                                             | Comments // Z                |
|-----|----------------------------------------------------------------------------------------------------------------|------------------------------|
| [4] | Let \$x and \$y be the price of each small and each large Pikachi plushy                                       | Most students                |
|     | respectively.                                                                                                  | were able to                 |
|     |                                                                                                                | form the three               |
| 1   | Retailer A:                                                                                                    | equations. Only a            |
| 1   | 30x + 50y = 1375 		(1)                                                                                         | handful realized             |
|     |                                                                                                                | the need to                  |
| 1   | Retailer B:                                                                                                    |                              |
| 1   | kx + 2ky = 2704                                                                                                | equations before using GC to |
|     | Retailer B:<br>$kx + 2ky = 2704$ $\Rightarrow b \forall k$<br>$x + 2y - 2704 \left(\frac{1}{k}\right) = 0$ (2) | solve for the                |
| 1   | (k)(e)                                                                                                         | unknowns.                    |
|     | Retailer C:                                                                                                    | dikilowiis.                  |
|     | Retailer C: $2kx + ky = 2522$ $\Rightarrow by k$                                                               |                              |
|     | $2x + y - 2522 \left(\frac{1}{k}\right) = 0 \qquad (3)$                                                        |                              |
|     | $2x + y - 2522 \left(\frac{1}{k}\right) = 0 \qquad (3)$                                                        |                              |
|     | 1 1                                                                                                            |                              |
|     | From GC: $x = 15$ , $y = 18.5$ , $\frac{1}{k} = \frac{1}{52}$                                                  |                              |
|     | Hence, $k = 52$ , each small Pikachi plushy costs \$15, and each large                                         |                              |
|     | Pikachi plushy costs \$18.50.                                                                                  |                              |

When  $r = \sqrt{2}$ ,  $\frac{dh}{dt} = -10 \frac{dr}{dt} \Rightarrow \frac{4+h^2}{-\sqrt{2}h} = -10$  $\Rightarrow h^2 - 10\sqrt{2}h + 4 = 0$ Solving: h = 13.9 (3sf) or h = 0.289 (3sf)Since h > r, the height of the cone required is 13.9 cm (to 3 sf). Comments ... This question is not well done. Most split  $= -\frac{1}{8} \int \frac{-8x - 8}{\sqrt{1 - 8x - 4x^2}} dx + \int \frac{1}{\sqrt{1 - 8x - 4x^2}} dx + \int \frac{2}{\sqrt{1 - 8x - 4x^2}} dx + \int \frac{2}{\sqrt{1 - 8x - 4x^2}} dx + \int \frac{1}{\sqrt{1 - 8x - 4x^2}} dx + \int \frac{2}{\sqrt{1 - 8x - 4x^2}} dx + \int \frac{1}{\sqrt{1 - 8x = -\frac{1}{4}\sqrt{1 - 8x - 4x^2} + \frac{1}{2}\sin^{-1}\frac{2\sqrt{5}(x+1)}{5} + C$ (b)  $x = 2\sec\theta \Rightarrow \frac{dx}{d\theta} = 2\sec\theta \tan\theta$ When x = 2,  $\sec\theta = 1 \Rightarrow \cos\theta = 1 \Rightarrow \theta = 0$ 

2017 Y6 H2 Math Preliminary Examination Paper 1 Page 1 of 16 2017 Y6 H2 Math Preliminary Examination Paper 1 Page 2 of 16

given in MF26.

There is a significant number of students who do not know how to integrate  $tan^2 \theta$ and  $\sec^2 \theta$ . Make sure you know how to integrate all the trigonometric function

(sin x, cos x, tan x, sec x, cosec x, cot x) and (trigonometric)2 function, such as  $\sin^2 x, \cos^2 x, \tan^2 x, \sec^2 x, \csc^2 x, \cot^2 x$ 

and be familiar with the formulae/identities

| $= \int_{0}^{\frac{\pi}{3}} \frac{\sqrt{4\sec^2\theta - 4}}{2\sec\theta} (2\sec\theta \tan\theta) d\theta$                                                                                                          | The other common mistake is not changing the limits of the integration when substituting $x$ by $2 \sec \theta$ . |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| $= \int_0^{\frac{\pi}{3}} \frac{2 \tan \theta}{2 \sec \theta} (2 \sec \theta \tan \theta) d\theta$ since $\sqrt{4 \sec^2 \theta - 4} = 2 \sqrt{\tan^2 \theta} = 2 \tan \theta$ for $0 \le \theta \le \frac{\pi}{3}$ |                                                                                                                   |
| $=\int_0^{\frac{\pi}{3}} 2 \tan^2 \theta  d\theta$                                                                                                                                                                  |                                                                                                                   |
| $= 2 \int_0^{\frac{\pi}{3}} \sec^2 \theta - 1  d\theta$ $= 2 \left[ \tan \theta - \theta \right]_0^{\frac{\pi}{3}}$                                                                                                 |                                                                                                                   |
| $=2\left[\sqrt{3}-\frac{\pi}{3}\right]$                                                                                                                                                                             |                                                                                                                   |

| Qn 4         |                                                                                                          | Comments                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------|----------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1)          | $y = \frac{a}{(x+b)^2} + cx$                                                                             | When finding the derivati      | (x+b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\mathbf{U}$ | , ,                                                                                                      | with respect to $x$ , there is | no need to use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              | C has a vertical asymptote $x = -1 \implies b = 1$                                                       | the quotient rule. If the un   | nknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              | C passes through $(0,1) \Rightarrow a=1$                                                                 | constants bother you, ask      | yourself how                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1            | dv 2                                                                                                     | you would proceed to fin       | d its derivative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              | $\frac{dy}{dx} = -\frac{1}{(x+1)^3} + c$                                                                 | if you assume some real        | values for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              | $\alpha (x+1)$                                                                                           | unknown constants. Eg_         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1            | $\frac{dy}{dx} = -\frac{2}{(x+1)^3} + c$ At (0,1), $\frac{dy}{dx} = 0 \Rightarrow c = \frac{2}{1^3} = 2$ | ,                              | x+1) <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1            | At $(0,1)$ , $\frac{1}{dx} = 0 \Rightarrow 0 = 1$                                                        | If you can identify the va     | alues of some of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              |                                                                                                          | the unknowns immediate         | ely, substituting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1            |                                                                                                          | these values into the orig     | ginal expression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1            |                                                                                                          | will help to simplify you      | ir calculations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (iii)        | y                                                                                                        |                                | Whenever you                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (i3V         | <u>↑</u>                                                                                                 |                                | are sketching a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                          | /                              | graph, you<br>should always                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1            |                                                                                                          |                                | remember SIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |                                                                                                          | //2-                           | The state of the s |
|              |                                                                                                          | C/ y-Z                         | (shape,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              | y=-2x                                                                                                    |                                | intercepts,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              |                                                                                                          |                                | asymptotes).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |                                                                                                          |                                | Question also                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              | (0,1)                                                                                                    |                                | states that (0, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |                                                                                                          |                                | is a minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |                                                                                                          |                                | point, so if it is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |                                                                                                          | x                              | not featured in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1            | 0                                                                                                        |                                | the graph,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                                                                          |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 2017 Y6 H2 Math Preliminary | Examination Paper 1 Page 3 of 16 |
|-----------------------------|----------------------------------|

|             |                                                                                                                                                                             | something is                                                                                                                                                                                                                                                                                                                                                                               |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| iii)<br>22) | $f( x )-4>0 \Leftrightarrow f( x )>4$ The line $y=4$ cuts the graph of $y=f( x )$ at $x=\pm 1.94$ (3sf). $\therefore f( x )-4>0 \Leftrightarrow x<-1.94 \text{ or } x>1.94$ | wrong! Your graph should also be symmetrical about the y-axis.  Question did not ask for exact answers, so it is nor necessary to solve for the intersection points algebraically. You just need to plot a graph and find its intersection with the x-axis using a GC. Your final answer should be symmetrical about the y axis, and remember to give the final non exact answers to 3 sf. |

Page 4 of 16

<sup>2017</sup> Y6 H2 Math Preliminary Examination Paper 1



| 2017 Y6 H2 Math Preliminary Examination Page | er 1 |
|----------------------------------------------|------|
| Page 5 c                                     |      |
| rages                                        | . 20 |

| 100        | 6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (i)<br>[5] | $y = \ln(1 + \sin 2x)$ so $e^{y} = 1 + \sin 2x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Since we need to deri<br>the 2 <sup>nd</sup> order DE which<br>involves e <sup>y</sup> , we shoul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            | Differentiating with respect to x:<br>$e^{y} \frac{dy}{dx} = 2\cos 2x$ $e^{y} \frac{d^{2}y}{dx^{2}} + e^{y} \left(\frac{dy}{dx}\right)^{2} = -4\sin 2x  \text{(shown)}$ $e^{y} \frac{d^{3}y}{dx^{3}} + e^{y} \left(\frac{dy}{dx}\right) \left(\frac{d^{2}y}{dx^{2}}\right) + 2e^{y} \left(\frac{dy}{dx}\right) \left(\frac{d^{2}y}{dx^{2}}\right) + e^{y} \left(\frac{dy}{dx}\right)^{3} = -8\cos 2x$ $e^{y} \frac{d^{3}y}{dx^{3}} + 3e^{y} \left(\frac{dy}{dx}\right) \left(\frac{d^{2}y}{dx^{2}}\right) + e^{y} \left(\frac{dy}{dx}\right)^{3} = -8\cos 2x$ | express $y = \ln(1+\sin \alpha)$ as $e^y = 1 + \sin 2x$ and apply implicit differentiation. Direct differentiation can be complicated at times.  Note that $\frac{d}{dx} \left( \frac{dy}{dx} \right)^2 = 2 \left( \frac{dy}{dx} \right) \left( \frac{d}{dx} \right)^2 = 2 \left( \frac{dy}{dx} \right) \left( \frac{dy}{dx} $ |
|            | $dx^{3} = (dx)(dx^{2}) + (dx)$ When $x = 0$ , $e^{y} = 1 \Rightarrow y = 0$ , $\frac{dy}{dx} = 2$ , $\frac{d^{2}y}{dx^{2}} = -4$ , $\frac{d^{3}y}{dx^{3}} = 8$ .  By Maclaurin's Theorem, $y = 2x - 4\left(\frac{x^{2}}{2!}\right) + 8\left(\frac{x^{3}}{3!}\right) + \cdots$ $= 2x - 2x^{2} + \frac{4}{3}x^{3} + \cdots$                                                                                                                                                                                                                                     | An alternative solution involves applying standard Maclaurin expansion although the not the intended method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | $ax(1+bx)^{*}$ $= ax \left[ 1 + n(bx) + \frac{n(n-1)}{2!}(bx)^{2} + \frac{n(n-1)(n-2)}{3!}(bx)^{3} + \dots \right]$ $= ax + nabx^{2} + \frac{n(n-1)}{2}ab^{2}x^{3} + \dots$ By comparing coefficients, $a = 2$ $nab = -2 \Rightarrow nb = -1$                                                                                                                                                                                                                                                                                                                 | A cômmon mistake involves omitting the term, $ax$ , in the expansion of $ax(1+b)$ . Also, since we do not know whether $n$ is a positive integer or no should not use $\binom{n}{r}$ o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

2017 Y6 H2 Math Preliminary Examination Paper 1 Page 6 of 16  $\Rightarrow n^2b^2 - nb^2 = \frac{4}{3}$   $\Rightarrow (-1)^2 - (-1)b = \frac{4}{3}$   $\Rightarrow b = \frac{1}{3} \quad \text{and} \quad n = -3$   $x^4 \text{ term in the expansion of } 2x\left(1 + \frac{1}{3}x\right)^{-3}$ 

 $=2x\left[\frac{-3(-4)(-5)}{3!}\left(\frac{1}{3}x\right)^{3}\right]=-\frac{20}{27}x^{4}$ 

 $\therefore \text{ coefficient of } x^4 = -\frac{20}{27}$ 

| Qn          | 7                                                                                                                                                                                                                                                                                                                                             | Comments                                                                                                                      |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| (i)<br>[1]  | Let $\beta$ be the angle of elevation of the bottom of the screen from eye-<br>level. $\tan(\alpha + \beta) = \frac{a+b}{x} \Rightarrow \alpha + \beta = \tan^{-1} \frac{a+b}{x}$ $\tan(\beta) = \frac{b}{x} \Rightarrow \beta = \tan^{-1} \frac{b}{x}$ $\alpha = (\alpha + \beta) - \beta = \tan^{-1} \frac{a+b}{x} - \tan^{-1} \frac{b}{x}$ | Students should define the angles properly. They can also draw a diagram to indicate the angles $\alpha$ and $\beta$ .        |
| (ii)<br>191 | $\frac{d\alpha}{dx} = \frac{1}{1 + \left(\frac{a+b}{x}\right)^2} \left(-\frac{a+b}{x^2}\right) - \frac{1}{1 + \left(\frac{b}{x}\right)^2} \left(-\frac{b}{x^2}\right)$ $= -\frac{a+b}{x^2 + (a+b)^2} + \frac{b}{x^2 + b^2}$ For maximum $\alpha : \frac{d\alpha}{dx} = -\frac{(a+b)}{x^2 + (a+b)^2} + \frac{b}{x^2 + b^2} = 0$                | Students should<br>note the<br>application of<br>chain rule in the<br>showing of the<br>differentiation in<br>the first line. |
|             | $\frac{(a+b)}{x^2 + (a+b)^2} = \frac{b}{x^2 + b^2}  \text{(Shown)}$ $(a+b)(x^2 + b^2) = b[x^2 + (a+b)^2]$ $(a+b)x^2 + (a+b)b^2 = bx^2 + b(a+b)^2$                                                                                                                                                                                             |                                                                                                                               |
|             | $ax^{2} = b(a+b)[a+b-b] = ab(a+b)$ $x = \sqrt{b(a+b)} \text{ or } -\sqrt{b(a+b)} \text{ (NA since } x > 0)$                                                                                                                                                                                                                                   |                                                                                                                               |

2017 Y6 H2 Math Preliminary Examination Paper 1 Page 7 of 16

| $\overline{}$ |                                                                                                                                                                                  |                                     |                             |                                     |                                          |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------|-------------------------------------|------------------------------------------|
| ii)           | Let the screen to be positioned y metres                                                                                                                                         | above the ey                        | e level.                    |                                     | Students should                          |
| V             | $\alpha = \tan^{-1} \frac{a+y}{-1} - \tan^{-1} \frac{y}{-1}$                                                                                                                     |                                     |                             |                                     | note that it is eye level and not        |
|               | c c                                                                                                                                                                              |                                     |                             |                                     | ground level                             |
|               | $\frac{\mathrm{d}\alpha}{\mathrm{d}y} = \frac{1}{1 + \left(\frac{a+y}{c}\right)^2} \left(\frac{1}{c}\right) - \frac{1}{1 + \left(\frac{y}{c}\right)^2} \left(\frac{1}{c}\right)$ |                                     |                             |                                     | given in the                             |
|               | $1+\left(\frac{u+y}{c}\right)$ $(c)$ $1+\left(\frac{y}{c}\right)$                                                                                                                |                                     |                             |                                     | question, for<br>those who               |
|               | c c                                                                                                                                                                              |                                     |                             |                                     | concluded that it                        |
|               | $= \frac{c}{c^2 + (a+y)^2} - \frac{c}{c^2 + y^2}$                                                                                                                                |                                     |                             |                                     | is impossible to get y being             |
|               | $c\left[c^{2}+y^{2}-c^{2}-(a+y)^{2}\right]$                                                                                                                                      |                                     |                             |                                     | negative.                                |
|               | $= \frac{c\left[c^2 + y^2 - c^2 - (a+y)^2\right]}{\left[c^2 + (a+y)^2\right](c^2 + y^2)}$                                                                                        |                                     |                             |                                     |                                          |
|               | $= \frac{c[y+(a+y)][y-(a+y)]}{[c^2+(a+y)^2](c^2+y^2)}$                                                                                                                           |                                     |                             |                                     |                                          |
|               | ' ' ' '                                                                                                                                                                          | ٠                                   | . a/1                       |                                     |                                          |
|               | $= \frac{-ac[a+2y]}{[c^2+(a+y)^2](c^2+y^2)} =$                                                                                                                                   | -2ac y                              | $\frac{+\sqrt{2}}{2}$       | 7                                   |                                          |
|               |                                                                                                                                                                                  | -                                   |                             | ,                                   |                                          |
|               | For maximum $\alpha : \frac{d\alpha}{dy} = \frac{-ac[a]}{[c^2 + (a+y)]}$                                                                                                         | $\frac{1+2y}{\left(c^2+y^2\right)}$ | = 0                         |                                     | Students should                          |
|               | $\Rightarrow y = -\frac{a}{2}(\text{since}$                                                                                                                                      | $e \ a \neq 0 $ and $a \neq 0$      | e ≠ 0)                      |                                     | show how they<br>deduced the             |
|               | у                                                                                                                                                                                | $\left(-\frac{a}{2}\right)^{-}$     | $\left(-\frac{a}{2}\right)$ | $\left(-\frac{a}{2}\right)^{\star}$ | signs of the derivative for              |
|               | $\left[y+\frac{a}{2}\right]$                                                                                                                                                     | <0                                  | 0                           | >0                                  | $y = \left(-\frac{a}{2}\right)^{-1}$ and |
|               | $-2ac\left[y+\frac{a}{2}\right]$ , where $-2ac<0$                                                                                                                                | >0                                  | 0                           | <0                                  | $y = \left(-\frac{a}{2}\right)^4$        |
|               | ďα                                                                                                                                                                               | >0                                  | 0                           | <0                                  | Some were also                           |
|               | dy                                                                                                                                                                               |                                     |                             |                                     | successful in                            |
|               | Therefore $y = -\frac{a}{2}$ gives the maximum                                                                                                                                   | n viewing a                         | ngle $\alpha$ .             |                                     | using the second derivative test,        |
|               |                                                                                                                                                                                  |                                     |                             |                                     | although it is<br>more demanding         |
|               | Interpretation of the answer:<br>In order to maximise the viewing an                                                                                                             | gle $\alpha$ , the ce               | ntre of the                 | screen                              | to obtain.                               |
| L             | need to be placed at eye level regard                                                                                                                                            | less of the p                       | osition of                  | the sofa.                           |                                          |

| Qn.8       |                                                                | Comments *                                                                                 |
|------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| (i)<br>121 | Using $\sin^2 t + \cos^2 t = 1$ , a cartesian equation of C is | Important to remember the Trigo identities. Answers such as $y = 2\cos(\sin^{-1}\sqrt{x})$ |

2017 Y6 H2 Math Preliminary Examination Paper 1

Page 8 of 16

2017 Year 6

| 100000      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2017 Year 6                                                                                                                                                                                                                                         |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (ii)<br>[3] | $x + \left(\frac{y}{2}\right)^2 = 1$ $\Rightarrow y^2 = 4 - 4x, \ 0 \le x \le 1, \ 0 \le y \le 2$ or $\Rightarrow y = 2\sqrt{1 - x}, \ 0 \le x \le 1$ Differentiate with respect to x: $1 + \frac{y}{2} \frac{dy}{dx} = 0  \Rightarrow  \frac{dy}{dx} = -\frac{2}{y}$ When $t = \frac{\pi}{3}, \ x = \sin^2\left(\frac{\pi}{3}\right) = \frac{3}{4}, \ y = 2\cos\left(\frac{\pi}{3}\right) = 1, \ \frac{dy}{dx} = -2$ Hence, an equation of $t$ is $y - 1 = -2\left(x - \frac{3}{4}\right)$ | are <u>not</u> accepted as they are <u>not</u> simplified. Essential to state $0 \le x \le 1$ and/or $0 \le y \le 2$ as C is defined for $0 \le t \le \frac{\pi}{2}$ . $\frac{dy}{dx}$ can also be found by parametric or explicit differentiation. |
| 色           | $y = -2x + \frac{5}{2}$ $\begin{pmatrix} 0, \frac{5}{2} \\ 0, 2 \end{pmatrix}$ $\begin{pmatrix} \frac{3}{4}, 1 \\ 0 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                          | Sketch $C$ for $0 \le x \le 1$ only. State the <u>coordinates</u> of the point of intersection and axial intercepts. Sketch should illustrate                                                                                                       |
|             | Volume of revolution of $R$ rotated about the $x$ -axis $= \pi \int_{0}^{\frac{1}{4}} \left(-2x + \frac{5}{2}\right)^{2} dx - \pi \int_{0}^{\frac{1}{4}} (4 - 4x) dx$ $= \pi \left[\frac{\left(-2x + \frac{5}{2}\right)^{3}}{3(-2)}\right]_{0}^{\frac{1}{4}} - \pi \left[4x - 2x^{2}\right]_{0}^{\frac{1}{4}}$ $= -\frac{1}{6}\pi \left[1^{3} - \left(\frac{5}{2}\right)^{3}\right] - \pi \left[3 - 2\left(\frac{3}{4}\right)^{2}\right]$                                                   | that line $l$ is a tangent to curve $C$ at $(\frac{1}{4}, 1)$ .  As "exact value" is required, you are to show clear working instead of using the GC to obtain the values of the integrals. (You may, of course, use the GC to check your answer).  |

Raffles Institution H2 Mathematics 2017 Year 6

$$= \frac{39}{16}\pi - \frac{15}{8}\pi$$

$$= \frac{9}{16}\pi \text{ units}^{3}$$
OR Use volume of cone  $= \frac{1}{3}\pi r^{2}h$ , i.e.
$$\left[\frac{1}{3}\pi \left(\frac{5}{2}\right)^{2} \left(\frac{5}{4}\right) - \frac{1}{3}\pi (1)^{2} \left(\frac{1}{2}\right)\right] - \pi \int_{0}^{2} (4 - 4x) \, dx$$

| Qn 9              |                                                                                                                                     | Comments                                |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| (a)<br>(i)<br>[5] | Since $z = 1 + 3i$ is a root and the polynomial has real coefficients, $z = 1 - 3i$ is also a root to the polynomial.               | Note the following instruction is       |
|                   | Hence a quadratic factor of the polynomial is                                                                                       | given at the                            |
|                   | (z-(1+3i))(z-(1-3i)) =                                                                                                              | start of the question -                 |
|                   | $(z^2 - z(1+3i+1-3i)+(1+3i)(1-3i)) = (z^2-2z+10)$                                                                                   | "Do not use a                           |
|                   | $z^4 + 2z^3 + az^2 + bz + 50$                                                                                                       | answering<br>this                       |
|                   | $= (z^2 - 2z + 10)(Az^2 + Bz + C)$ for some constants A, B and C.                                                                   | question".                              |
|                   | By comparing coefficient of $z^4$ and $z^3$ , $A = 1$ and $B - 2A = 2 \Rightarrow B = 4$<br>By comparing the constant term, $C = 5$ | Obviously<br>you can use<br>GC to check |
|                   | Hence $z^4 + 2z^3 + az^2 + bz + 50 = (z^2 - 2z + 10)(z^2 + 4z + 5)$                                                                 | your answer,<br>but you are             |
|                   | Comparing coefficient of $z^2$ and $z$ , we have $a = -8 + 10 + 5 = 7$ and $b = 40 - 10 = 30$ (shown).                              | required to<br>show clear<br>working.   |
|                   | Solving $z^2 + 4z + 5 = 0$ ,                                                                                                        |                                         |
|                   | $z = \frac{-4 \pm \sqrt{4^2 - 4(5)}}{2} = \frac{-4 \pm \sqrt{-4}}{2} = \frac{-4 \pm \sqrt{4}\sqrt{-1}}{2} = -2 \pm i.$              |                                         |
|                   | Hence the other roots are $z = 1 - 3i$ , $z = -2 + i$ and $z = -2 - i$ .                                                            |                                         |
|                   | Alternative Solution (more tedious):                                                                                                |                                         |
|                   | Since $1+3i$ is a root,                                                                                                             |                                         |
|                   | $(1+3i)^4 + 2(1+3i)^3 + a(1+3i)^2 + b(1+3i) + 50 = 0(1)$                                                                            |                                         |
|                   | $(1+3i)^2 = 1^2 + 2(3i) + (3i)^2 = (1-9) + 6i = -8 + 6i$                                                                            |                                         |
|                   | $(1+3i)^3 = (1+3i)(-8+6i) = (-8-18)+i(6-24) = -26-18i$                                                                              |                                         |

<sup>2017</sup> Y6 H2 Math Preliminary Examination Paper 1 Page 9 of 16<sub>0</sub>

| $(1+3i)^4 = (-8+6i)^2 = 64-96i-36 = 28-96i$ Applying above results on (1), $(28-96i)+2(-26-18i)+a(-8+6i)+b(1+3i)+50 = 0$ $(26-8a+b)+(-132+6a+3b)i=0$ Comparing real and imaginary parts, $26-8a+b=0  \text{and}  -132+6a+3b=0$ equivalent to $-44+2a+b=0$ Solving, $-44-26+10a=0 \Rightarrow a=7$ and $b=8(7)-26=30$ $\therefore a=7, b=30 \text{ (shown)}$ Since $z=1+3i$ is a root and the polynomial has real coefficients, $z=1-3i$ is also a root to the polynomial. $z^4+2z^3+7z^2+30z+50$ $=(z-(1+3i))(z-(1-3i))(z^2+Az+B)$ | e                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| $(28-96i) + 2(-26-18i) + a(-8+6i) + b(1+3i) + 50 = 0$ $(26-8a+b) + (-132+6a+3b)i=0$ Comparing real and imaginary parts, $26-8a+b=0  \text{and}  -132+6a+3b=0$ $\text{equivalent to}  -44+2a+b=0$ Solving, $-44-26+10a=0 \Rightarrow a=7 \text{ and } b=8(7)-26=30$ $\therefore a=7, b=30 \text{ (shown)}$ Since $z=1+3i$ is a root and the polynomial has real coefficients, $z=1-3i$ is also a root to the polynomial. $z^4+2z^3+7z^2+30z+50$                                                                                     | e                                                |
| $(26-8a+b)+(-132+6a+3b)i=0$ Comparing real and imaginary parts, $26-8a+b=0  \text{and}  -132+6a+3b=0$ equivalent to $-44+2a+b=0$ Solving, $-44-26+10a=0 \Rightarrow a=7$ and $b=8(7)-26=30$ $\therefore a=7, b=30 \text{ (shown)}$ Since $z=1+3i$ is a root and the polynomial has real coefficients, $z=1-3i$ is also a root to the polynomial. $z^4+2z^3+7z^2+30z+50$                                                                                                                                                            | o                                                |
| Comparing real and imaginary parts,<br>26-8a+b=0 and $-132+6a+3b=0equivalent to -44+2a+b=0Solving, -44-26+10a=0 \Rightarrow a=7 and b=8(7)-26=30\therefore a=7, b=30 (shown)Since z=1+3i is a root and the polynomial has real coefficients, z=1-3i is also a root to the polynomial.z^4+2z^3+7z^2+30z+50$                                                                                                                                                                                                                         | o                                                |
| Solving, $-44-26+10a=0 \Rightarrow a=7$ and $b=8(7)-26=30$<br>$\therefore a=7$ , $b=30$ (shown)<br>Since $z=1+3i$ is a root and the polynomial has real coefficients, $z=1-3i$ is also a root to the polynomial.<br>$z^4+2z^3+7z^2+30z+50$                                                                                                                                                                                                                                                                                         | e                                                |
| $\therefore a = 7, b = 30 \text{ (shown)}$ Since $z = 1 + 3i$ is a root and the polynomial has real coefficients, $z = 1 - 3i$ is also a root to the polynomial. $z^4 + 2z^3 + 7z^2 + 30z + 50$                                                                                                                                                                                                                                                                                                                                    | ¢                                                |
| $z^4 + 2z^3 + 7z^2 + 30z + 50$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                |
| 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| $=(z-(1+3i))(z-(1-3i))(z^2+Az+B)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |
| $=(z^2-2z+10)(z^2+Az+B)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                |
| By comparing coefficients, we have $A = 4$ , $B = 5$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |
| Solving $z^2 + 4z + 5 = 0$ , $z = \frac{-4 \pm \sqrt{-4}}{2} = \frac{-4 \pm \sqrt{4}\sqrt{-1}}{2} = -2 \pm i$ .                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |
| Hence the other roots are $z = 1 - 3i$ , $z = -2 + i$ and $z = -2 - i$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |
| (ii) Let $z = iw$ , then we get $(iw)^4 + 2(iw)^3 + 7(iw)^2 + 30(iw) + 50 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Note that                                        |
| $\Rightarrow w^4 - 2iw^3 - 7w^2 + 30iw + 50 = 0.$ $z = iw \Rightarrow w = -iz.$                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{1}{i} = -i$                               |
| Hence the roots are $w = -i - 3$ , $w = -i + 3$ , $w = 2i + 1$ and $w = 2i - 1$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  |
| $ p  =  p^*  = \frac{\left(-\frac{1}{\sqrt{3}} + i\right)^3}{\left (1 - i)\right ^4} = \frac{\left(\frac{2}{\sqrt{3}}\right)^5}{\left(\sqrt{2}\right)^4} = \frac{32}{4} \left(\frac{1}{\sqrt{3}}\right)^5 = \frac{8}{9\sqrt{3}} \text{ or } \frac{8\sqrt{3}}{27}$                                                                                                                                                                                                                                                                  | Note that this question requires you to consider |
| $arg(p) = -arg(p^*) = -\left(5arg\left(-\frac{1}{\sqrt{3}} + i\right) - 4arg(1-i)\right) + 2\pi + 2\pi$                                                                                                                                                                                                                                                                                                                                                                                                                            | $ p^* $ and $arg(p^*)$ .                         |
| $= -\left(5\left(\frac{2\pi}{3}\right) - 4\left(-\frac{\pi}{4}\right)\right) + 2\pi + 2\pi$ $= -\frac{\pi}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                     | Remember to simplify your surds.                 |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\arg(1-i) = -\frac{\pi}{4}$                     |
| $p = \frac{8}{9\sqrt{3}} \left( \cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right) \right) = \frac{8}{9\sqrt{3}} \left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = \frac{4}{9\sqrt{3}} - \frac{4}{9}i \text{ or } \frac{4\sqrt{3}}{27} - \frac{4}{9}i$                                                                                                                                                                                                                                                              | arg(1-1) = -4                                    |

| $\bigg)\bigg) + 2\pi + 2\pi$                                                                                                                            | Remember to simplify your surds. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| $\frac{3}{\sqrt{3}}\left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = \frac{4}{9\sqrt{3}} - \frac{4}{9}i \text{ or } \frac{4\sqrt{3}}{27} - \frac{4}{9}i$ | $\arg(1-i) = -\frac{\pi}{4}$     |
| 2017 Y6 H2 Math Preliminary Examinat<br>Pa                                                                                                              | ion Paper 1<br>age 11 of 16      |

| Qn 10       |                                                                                                                                                                        | Comments                                                             |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 1 1         | 10.000                                                                                                                                                                 |                                                                      |
| (i)<br>(6)  | $\frac{dx}{dt} = \frac{1}{10}x(1-x)$                                                                                                                                   |                                                                      |
| 161         | $((1, 1), (1, \dots))$                                                                                                                                                 |                                                                      |
| =           | $\int \left( \frac{1}{x} + \frac{1}{1-x} \right) dx = \int \frac{1}{10} dt$                                                                                            |                                                                      |
|             | .   x   1                                                                                                                                                              |                                                                      |
| =           | $ \ln \left  \frac{x}{1-x} \right  = \frac{1}{10}t + C , $                                                                                                             | If $\ln \frac{x}{1-x}$ is                                            |
| 1 1         | where Cie on orbitary acceptant                                                                                                                                        | given instead                                                        |
|             |                                                                                                                                                                        |                                                                      |
| =           | $\Rightarrow \frac{\hat{A}}{1-r} = Ae^{10}$ , where $A = \pm e^{C}$                                                                                                    | of $\ln \left  \frac{x}{1-x} \right $ ,                              |
|             | <u></u>                                                                                                                                                                | then $0 < x < 1$                                                     |
| =           | $x = \frac{Ae^{\frac{t}{10}}}{1 + Ae^{\frac{t}{10}}}$                                                                                                                  | should be                                                            |
|             | 1. 4.10                                                                                                                                                                | stated to                                                            |
|             |                                                                                                                                                                        | justify the                                                          |
| l v         | When $t = 0$ , $x = \frac{1}{5}$ . That is, $\frac{1}{5} = \frac{A}{1+A} \Rightarrow A = \frac{1}{4}$ .                                                                | removal of<br>the modulus                                            |
| 1 1         | 1                                                                                                                                                                      | the modulus.                                                         |
|             | Hence, $x = \frac{\frac{1}{4}e^{\frac{t}{10}}}{1 + \frac{1}{e}e^{\frac{t}{10}}} = \frac{e^{\frac{t}{10}}}{4 + e^{\frac{t}{10}}} = 1 - \frac{4}{4 + e^{\frac{t}{10}}}.$ |                                                                      |
| H           | lence, $x = \frac{4}{1} = \frac{1}{1} = \frac{4}{1}$                                                                                                                   | Final answer                                                         |
|             | $1 + \frac{1}{4} e^{\frac{1}{10}} + 4 + e^{\frac{1}{10}} + 4 + e^{\frac{1}{10}}$                                                                                       | should be in                                                         |
|             | 4                                                                                                                                                                      | simplified<br>form, it                                               |
|             | X                                                                                                                                                                      | should not                                                           |
|             | <b>^</b>                                                                                                                                                               | contain a                                                            |
|             | x = 1                                                                                                                                                                  | fraction                                                             |
|             |                                                                                                                                                                        | within a                                                             |
| 1 1         |                                                                                                                                                                        | fraction like                                                        |
|             |                                                                                                                                                                        | 1 . 10                                                               |
|             |                                                                                                                                                                        | $\frac{\frac{1}{4}e^{\frac{t}{10}}}{1+\frac{1}{4}e^{\frac{t}{10}}}.$ |
|             | Grant of e <sup>10</sup>                                                                                                                                               | . 1 1/2                                                              |
|             | Graph of $x = \frac{e^{\frac{1}{10}}}{4 \cdot e^{\frac{1}{10}}}$ :                                                                                                     | 1+-e10                                                               |
|             | 1/5 4+e <sup>10</sup>                                                                                                                                                  |                                                                      |
|             |                                                                                                                                                                        |                                                                      |
|             | 0                                                                                                                                                                      |                                                                      |
|             |                                                                                                                                                                        |                                                                      |
|             | ı                                                                                                                                                                      |                                                                      |
| (ii)<br>[2] | g. dr 1 //                                                                                                                                                             | The                                                                  |
| [2]/        | Since $\frac{dx}{dt} = \frac{1}{10}x(1-x)$ is a quadratic expression, destruction rate is at its                                                                       | The "destruction                                                     |
| _           |                                                                                                                                                                        | rate is at its                                                       |
|             | maximum when $x = \frac{0+1}{2} = \frac{1}{2}$                                                                                                                         | maximum"                                                             |
|             | Or when $d(dx) + 1 + 1$                                                                                                                                                | refers to                                                            |
|             | Or when $\frac{d}{dx} \left( \frac{dx}{dt} \right) = \frac{1}{10} - \frac{1}{5}x = 0$ i.e., $x = \frac{1}{2}$ .                                                        | maximum                                                              |
|             |                                                                                                                                                                        |                                                                      |

2017 Y6 H2 Math Preliminary Examination Paper 1

Page 12 of 16

tripo,

 $\frac{dx}{dt}$ , not

maximum x.  $t = 10 \ln 4$ The question asks to explain why the model Since  $e^{10} > 0$  for all real t, there is no value of t for x = 0. cannot be used to estimate (i.e. why we are Since  $0 < \frac{4}{4 + e^{10}} < 1$ , we will have 0 < x < 1. unable to estimate using the model), it Hence, x > 0 for all real values of t, and there is no value of t for x = 0. does not ask for why the model may not give a good Hence, x = 0 is a horizontal asymptote and there are no values of t giving estimate. So x = 0. answers like "extrapolation is not reliable" or "the model is not valid for t < 0" are not accepted.

2017 Y6 H2 Math Preliminary Examination Paper 1

Page 13 of 16

| $= \frac{2}{\pi} \tan^{-1} \left( \frac{t}{10} + \tan \frac{\pi}{10} \right) + C$ When $t = 0$ , $x = \frac{1}{5}$ . Hence $\frac{1}{5} = \frac{2}{\pi} \tan^{-1} \left( \tan \frac{\pi}{10} \right) + C \implies C = 0$ | It is important to have "+ C" then show that C = 0. Without this step, no mark can be awarded for |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                          | step, no mark<br>can be                                                                           |
| From G.C., when $x = 0$ , $t = -3.25$ (3 s.f.)<br>Hence, the forest have been burning for 3.25 hours when it is first noticed.                                                                                           | 7                                                                                                 |

|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Call Call To Call Call Call Call Call Call Call Cal                                                                                                                                                                                                                                                                 |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Qn !        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Comments                                                                                                                                                                                                                                                                                                            |
| [2]         | $\overline{OP} = \begin{pmatrix} 20 \\ -4 \\ 0 \end{pmatrix}, \ \overline{OV} = \begin{pmatrix} 0 \\ 0 \\ 2h \end{pmatrix}$ $\overline{PV} = \begin{pmatrix} -20 \\ 4 \\ 2h \end{pmatrix} = 2 \begin{pmatrix} -10 \\ 2 \\ h \end{pmatrix}$ Vector equation of the line depicting the path of the light ray from $P$ to $V$ is $\mathbf{r} = \begin{pmatrix} 20 \\ -4 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} -10 \\ 2 \\ h \end{pmatrix}, \ \lambda \in \mathbb{R}$ | Note that the vector equation of a line is of the form: $\mathbf{r} = \mathbf{a} + \lambda \mathbf{d}$ , $\lambda \in \mathbb{R}$ It is <u>not</u> written as $l = \mathbf{a} + \lambda \mathbf{d}$ , $\lambda \in \mathbb{R}$ or equation of line $l = \mathbf{a} + \lambda \mathbf{d}$ , $\lambda \in \mathbb{R}$ |
| (ii)<br>[3] | $\mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \alpha$ $\mathbf{r} = \begin{pmatrix} 20 \\ -4 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} -10 \\ 2 \\ h \end{pmatrix}, \ \lambda \in \mathbb{R}$ $\begin{pmatrix} 20 - 10\lambda \\ -4 + 2\lambda \\ \lambda h \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \alpha$ $20 - 10\lambda = \alpha \Rightarrow \lambda = \frac{20 - \alpha}{10}$                                                | "Does not exceed" means that the height is ≤ 35 units.  Students who attempted this question by similar triangles must take note that α is a negative value.                                                                                                                                                        |

2017 Y6 H2 Math Preliminary Examination Paper 1 Page 14 of 16

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2017 162 0                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| For shadow of the pyramid cast on the screen to not exceed the height of the screen, length of shadow, $\lambda h = \left(\frac{20 - \alpha}{10}\right) h \le 35$ $\Rightarrow h \le \frac{350}{20 - \alpha} \text{ since } \alpha < -4 \text{ implies } 20 - \alpha > 0$                                                                                                                                                                                                                   |                                                                                                                                                                                                                               |
| (iii) Given that $h = 10$<br>$\overrightarrow{OB} = \begin{pmatrix} 4 \\ -4 \\ 0 \end{pmatrix}$ , $\overrightarrow{OV} = \begin{pmatrix} 0 \\ 0 \\ 20 \end{pmatrix} \Rightarrow \overrightarrow{BV} = \begin{pmatrix} -4 \\ 4 \\ 20 \end{pmatrix}$<br>Length of the shadow cast by edge $\overrightarrow{VB}$<br>$= \begin{pmatrix} -4 \\ 4 \\ 20 \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = = \begin{pmatrix} 0 \\ 20 \\ -4 \end{pmatrix} = \sqrt{416} = 4\sqrt{26}$ | Please note that the shadow cast by the edge $VB$ on the screen is <u>not</u> $\overline{VB}$ .                                                                                                                               |
| A vector not man $VBC$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Students must be more careful when computing vectors. There is a lot of computation error for $\overline{CV}$ and $\overline{BV}$ .                                                                                           |
| Vector equation of the plane $VBC$ is $ \mathbf{r}. \begin{pmatrix} 5 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 20 \end{pmatrix} \begin{pmatrix} 5 \\ 0 \\ 1 \end{pmatrix} \Rightarrow \mathbf{r}. \begin{pmatrix} 5 \\ 0 \\ 1 \end{pmatrix} = 20 $ Angle of inclination made by the mirror with the ground                                                                                                                                                                       | This is just a direct application of angle between 2 planes with the normal of the ground $(x-y)$ plane) taken to be $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ . Note that this angle of inclination is <b>not</b> the same |

<sup>2017</sup> Y6 H2 Math Preliminary Examination Paper 1 Page 15 of 16

2017 Year 6

| $\begin{vmatrix} \cos^{-1} & \begin{pmatrix} 0 & 5 \\ 0 & 1 \end{pmatrix} & \begin{pmatrix} 5 \\ 0 \\ 1 \end{pmatrix} \\ \sqrt{1}\sqrt{25+1} \end{vmatrix} = \cos^{-1} \left  \frac{1}{\sqrt{26}} \right  = 78.7^{\circ} \text{ (collisions)}$ | as the angle between BV and BA which is equal to 78.9° |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| to 1 d.p.)                                                                                                                                                                                                                                     |                                                        |