Qns	Solution	Marking Scheme	Remarks
1(a)	$\frac{x}{5} + \frac{2x-3}{4} = -6$		
	$\frac{4x+5(2x-3)}{20} = -6$		
	4x + 10x - 15 = -120	M1	
	14x = -120 + 15		
	14x = -105		
	x = -7.5	A1	
1(b)	$\frac{2(p-3q)}{10r} \div \frac{(3q-p)^2}{r}$ $= \frac{2(p-3q)}{10r} \times \frac{r}{(3q-p)^2}$ $- \frac{2(p-3q)}{r} \times \frac{r}{r}$	M1	
	$= \frac{1}{10r} \times \frac{1}{(p-3q)^2}$ = $\frac{1}{5(p-3q)}$ or $\frac{-1}{5(3q-p)}$ or $\frac{-1}{15q-5p}$	A1	

1(c)	Method 1:			Deduct 1m for
			M1 $x \ge 2$	$2 \le x < 5.73$
	$x + 1 \le 7x - 2 \le 5x + 19$			
	$x+1 \leq \frac{1}{4} \leq \frac{1}{5}$		M1 $r < 5\frac{11}{1}$	No marks given for
	7x-2	7x - 2 $5x + 19$	15	$5\frac{11}{x} > x \ge 2$
	$x+1 \leq \underline{\qquad}$ and	$-\frac{-4}{5}$		15
	$4(x+1) \le 7x - 2$	5(7x-2) < 4(5x+19)		
	$4x + 4 \le 7x - 2$	35x - 10 < 20x + 76		
	$-3x \leq -6$	35x - 20x < 76 + 10		
	$x \ge 2$	15 <i>x</i> < 86		
		$x < 5\frac{11}{15}$	A1 $2 \le x < 5\frac{11}{15}$	
	$\cdot 2 \le r \le 5\frac{11}{10}$ or 2	$1 \le r \le \frac{86}{10}$		
	$2 \le x < 5\frac{15}{15}$ or 2	15		
	OR			

	Method 2:		
	$x+1 \le \frac{7x-2}{4} < \frac{5x+19}{5}$		
	$20(x+1) \le 5(7x-2) < 4(5x+19)$	M1	
	$20x + 20 \le 35x - 10 < 20x + 76$		
	$20x + 30 \le 35x < 20x + 86$	M1	
	$30 \le 15x < 86$		
	$2 \le x < 5\frac{11}{15}$ or $2 \le x < \frac{86}{15}$	A1	
1(d)	$2y^2 + 7y - 9$		Deduct 1m for changing
	$4y^2 - 81$		y to x: (2x+9)(x-1) = x - 1
	$=\frac{(2y+9)(y-1)}{(y-1)}$	M1 correct numerator	$\frac{(2x+9)(x-1)}{(2x+9)(2x-9)} = \frac{x-1}{2x-9}$
	(2y+9)(2y-9)	M1 correct	(,)(,),
	$=\frac{y-1}{z}$		
	2y - 9	A1 [10]	
2(a)(i)	First \$10 000:		
	Interest = $\frac{10000 \times 4 \times 0.05}{100} = 20	M1	
	Next \$20 000:		
	Interest = $\frac{20000 \times 4 \times 0.95}{100} = \760	M1	
	Total amount = $30\ 000 + 20 + 760 = 30\ 780$	A1	

2(a)(ii)	Bank <i>L</i> : Total amount = $30000 \left(1 + \frac{0.8}{100}\right)^4$	M1	If 2a(i) or 2a(ii) wrong, no marks given for correct conclusion.
	= \$30 971.58	A1	
	Since the total amount in Bank $L >$ total amount of Bank H after 4 years, I <u>disagree</u> with Cheryl's claim.	A1	

2(b)(i)	Hong Kong Hotel: HK $1 = S_{0.17}$ HK $825 = S_{(825 x 0 17)} = S_{140 25}$		
	Guangzhou Hotel: S\$1 = CNY\$5.33 CNY825 = S$\frac{825}{5.33}=S$154.78$ The Hong Kong hotel charges a cheaper rate per night.	A1	
	OR HK\$1 = S\$0.17 S\$1 = HK \$ $\frac{1}{0.17}$ =HK\$5.8823 Since S\$1 can get HK\$5.8823, by comparison with S\$1 = CNY\$5.33, CNY\$ is stronger than HK\$. Thus the Hong Kong hotel charges a cheaper rate per night.	M1 A1	
2(b)(ii)	Total cost = $(4 \times 825 \times 0.17) + (2 \times 825 \times \frac{1}{5.33})$ = $561 + 309.5684$ = $\$\70.5684 $k = \frac{890 - 870.5684}{870.5684} \times 100$ k = 2.23%(3s.f)	M2 – Total cost in SGD M1 A1 [12]	
3(a)(i)	13	B1	

3(a)(ii)	Interquartile range		
	= 15 - 10	M1	
	= 5	A1	
3(a)	Percentage		
(iii)	$-500-450$ $\times 100$	M1	
	$-\frac{1}{500}$ × 100		
	=10%	A1	
3(b)	Median in February $2021 = 13$ is less than median in		If IQR in 3a(ii) wrong,
	February 2022 = 16.		answer will be wrong.
	Hence, the patients generally stayed longer in	B1	
	February 2022.		
	Interquartile range in Feb $2021 = 5$ is less than		
	interquartile range of Feb $2022 = 12$.	B1	
	Hence, the number of days stayed in February 2022	B1 – state the figures	Need to state the figures
	is generally less consistent/more wide spread.	correctly	on the answer line.
3(c)	$\frac{450}{9} = \frac{9}{10}$		
	500 10	B1	
3(d)	Probability		1m given for either of the
	(125,500-125),(500-125,125)		fractions is correct.
	$=\left(\frac{1}{500}\times\frac{1}{499}\right)+\left(\frac{1}{500}\times\frac{1}{499}\right)$	M1	
	375		
	$=\frac{373}{009}$	A1 [11]	
	770		l
4(a)		D)	
4(a)	x - 2 - 1 0 1 2 3 4 5	D2 (B1 for each correct	
		(B) for each correct	
	$\begin{array}{ $	value)	

4(b)	Refer to the graph.	P2 - Plotting of correct points (P1 for at most 2 points plotted incorrectly).	
		C1 - Smooth curve.	
4(c)	Refer to graph for tangent drawn.	B1 – tangent drawn	
	Using $(3, -2.8)$ and $(5, 0.4)$, Gradient $= \frac{0.4 - (-2.8)}{5 - 3}$		
	=1.6 (Accept 1.1 to 2.2)	B1	
4(d)	$\frac{x^3}{5} - x^2 + 2 = 1$ Refer to graph for $y = 1$ drawn. Using the graph, x = -0.9 (accept -0.8 to -1.0) or $x = 1.1$ (accept 1.0 to 1.2) or $x = 4.75$ (accept 4.6 to 4.9) True; 3 intersections $-1.7 < k < 0$	B1 - For drawing of y = 1. B1 B1 B1 B1 B1 B1 B1 B1 B1 B1	
4(e)	Follow $k \in 1.7$	Б1[11]	
	False: $k < -1.7$		
	Accept all negative values		
5(a)(i)	$3(\frac{2}{3}\pi r^3) = \pi r^2 h$	M1	
	$2\pi r^3 = \pi r^2 h$		
	2r = h (shown)	A1	

5 (a)	2^{2} , $2^{(0)}$	M1 for either
(::)	$2\pi r^2 + 2\pi r(8-r)$	
(11)	$=2\pi r^2+16\pi r-2\pi r^2$	$2\pi r^2$ or $2\pi r(8-r)$ seen
	$=16\pi r$	A1
5(b)(i)	$h_{\rm p}$ $\sqrt{25}$	M1 – Square root
	$\frac{h_B}{h_C} = \sqrt{\frac{4}{64}}$	
	$h_{B} = 5$	
	$\overline{16} = \overline{8}$	
	$h_{\rm B} = \frac{5}{2} \times 16$	
	8	
	$h_{B} = 10$	A1
5(b) (ii)	$\frac{V_A}{V_C} = \left(\frac{8}{16}\right)^3$	M1 - $\left(\frac{8}{2}\right)^3$ OR $\left(\frac{1}{2}\right)^3$ seen
	$\frac{V_A}{450} = \frac{1}{8}$	(16) (2)
	$V_A = \frac{1}{8} \times 450$	A1 [8]
	$V_{A} = 56.25g$	
6(a)	AB = AD (tangents drawn from ext. point) angle BAC = angle DAC (tangents drawn from ext. point)	M1 (for only 1 condition) M2 (for all 3 conditions)
	AC is a common side.	
	$\Delta ABC \equiv \Delta ADC \text{ (SAS)}$	A1

6(b)(i)	$\angle ABO = 90^{\circ}$	
	$AB = 8\cos 42.5$	M1 (for either AB or OB)
	AB = 5.8982186cm	
	Area of triangle	
	$=\frac{1}{2} \times 8 \times 5.8982186 \sin 42.5$	M1
	= 15.93911	
	$= 15.9 \text{ cm}^2 (3s.f)$	A1
	OR $OB = 8 \sin 42.5$ OB = 5.40472 Area of triangle $= \frac{1}{2} \times AB \times OB$ $= \frac{1}{2} \times 5.8982186 \times 5.40472$ $= 15.9 cm^2$	M1 (for either <i>AB</i> or <i>OB</i>) M1 A1
6(b) (ii)	$\angle AOB = 180 - 90 - 42.5 = 47.5^{\circ}$ $\angle ABO = 90^{\circ}$ $OB = 8 \sin 42.5$ $OB = 5.404721cm$ [M1] [M1]	M1 (allow e.c.f)
	AICA OI SECIOI ODE	

	$=\frac{47.5}{360} \times \pi \times 5.404721^2$		
	=12.10842		
	$=12.1cm^{2}$		
		M1 (allow e.c.f)	
	Area of shaded region		
	= 15.93911 - 12.10842 = 3.83 cm ² (3 s f)		
		A1 [9]	
7(a)	DV = VB		
	$=\frac{1}{2}\sqrt{6^2+8^2}$		
	= 5 cm	M1	
	EV		
	$=\sqrt{15^2+5^2}$		
	$=\sqrt{250}$		
	=15.8113883008 cm		
	=15.8 cm (3s.f) (shown)	A1	
7(b)			
	$=\sqrt{15^2+8^2}$	M1	
	=17 cm		
	If <i>EV</i> = 15.8 cm		
	$\cos \angle ACE = \cos \angle VCE$		
		M1	

NAVAL BASE SECONDARY SCHOOL PRELIMINARY EXAMINATION, 2024 Paper 2

Marking Scheme

	$AC = \sqrt{8^2 + \epsilon^2}$	2.41	
	$AC = \sqrt{6} + 0$	MI	
	=10 cm		
	Using cosine rule,	M1	
	$\left(\sqrt{261}\right)^2 = 10^2 + 17^2 - 2(10)(17)\cos\angle ACE$		
	$\cos \angle ACE = \frac{128}{340}$		
	$\angle ACE = \cos^{-1}\left(\frac{128}{340}\right)$	A1	
	$\angle ACE = 67.88^{\circ}$		
	$\angle ACE = 67.9^{\circ} \text{ (1d.p)}$		
7(c)	Volume of cuboid = $8 \times 6 \times 15$		
	$=720cm^{3}$	M1	
	Volume of pyramid		
	$=\frac{1}{3} \times \left(\frac{1}{2} \times 6 \times 8\right) \times 15$		
	$=120cm^{3}$	N/ 1	
		MI	
	Remaining volume of the cuboid		
	= 720 - 120	A1	
	$= 600 \text{ cm}^3$		
8(a)(i)	Length of <i>AB</i>		

	$= \sqrt{(1 - (-7))^{2} + (-4 - (-2))^{2}}$ = $\sqrt{8^{2} + (-2)^{2}}$ = 8.25 <i>units</i> ² (3s.f)	B1	
8(a)(ii)	$\overrightarrow{OA} = \begin{pmatrix} 1 \\ -4 \end{pmatrix}, \overrightarrow{OB} = \begin{pmatrix} -7 \\ -2 \end{pmatrix}$		
	$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB}$		
	$\overrightarrow{AB} = -\begin{pmatrix} 1\\ -4 \end{pmatrix} + \begin{pmatrix} -7\\ -2 \end{pmatrix}$		
	$\overrightarrow{AB} = \begin{pmatrix} -8\\2 \end{pmatrix}$	B1	
8(a)(iii)	$\overrightarrow{OC} = \begin{pmatrix} -7 \\ -2 \end{pmatrix} + \begin{pmatrix} 5 \\ 4 \end{pmatrix}$		
	$\overrightarrow{OC} = \begin{bmatrix} -2\\ 2 \end{bmatrix}$		
	C (-2, 2)	B1	
8(a)(iv)	Gradient		
	$=\frac{-4-2}{2}$		
	1 - (-2)	M1 (allow e.c.f (a)(iii))	
	=-2		
	Subst $(1, 4)$		
		M1	

Page $13 \ \mathrm{of} \ 18$

NAVAL BASE SECONDARY SCHOOL PRELIMINARY EXAMINATION, 2024 Paper 2

Marking Scheme

y = -2x + cA1 -4 = -2(1) + cc = -2Equation of line: y = -2x - 28(b)(i) $\overrightarrow{OB} = 2c + 2a$ OR $\overrightarrow{OB} = 2a + 2c$ OR $\overrightarrow{OB} = 2(a + c)$ **B**1 8(b)(ii) $\overrightarrow{OP} = \frac{1}{4}\overrightarrow{OB}$ $\overrightarrow{OP} = \frac{1}{4} \left(2\underline{c} + 2\underline{a} \right)$ M1 $\overrightarrow{CP} = \overrightarrow{CO} + \overrightarrow{OP}$ $\overrightarrow{CP} = -2\underline{c} + \frac{1}{4} (2\underline{c} + 2\underline{a})$ $\overrightarrow{CP} = -\frac{3}{2}c + \frac{1}{2}a$ OR $\overrightarrow{CP} = \frac{1}{2}a - \frac{3}{2}c$ A1 OR $\overrightarrow{CP} = \overrightarrow{CB} + \overrightarrow{BP}$ $\overrightarrow{CP} = 2\overrightarrow{a} - \frac{3}{4} \left(2\overrightarrow{c} + 2\overrightarrow{a} \right)$ M1 $\overrightarrow{CP} = -\frac{3}{2}\overrightarrow{c} + \frac{1}{2}\overrightarrow{a}$ A1 8(b)(iii) $\overrightarrow{CA} = -2c + a$ If \overrightarrow{CP} is wrong, then no **M**1 OR A1 mark. $\overrightarrow{PA} = \overrightarrow{PO} + \overrightarrow{OA}$ $\overrightarrow{PA} = -\frac{1}{2}c - \frac{1}{2}a + a$ $\overrightarrow{PA} = \frac{1}{2}\overrightarrow{a} - \frac{1}{2}\overrightarrow{c} = \frac{1}{2}(\overrightarrow{a} - \overrightarrow{c})$ Page 14 of 18

	$\overrightarrow{CP} = -\frac{3}{2}c + \frac{1}{2}a$ $\overrightarrow{CP} = \frac{1}{2}(-3c + a)$ Since $\overrightarrow{CA} \neq k\overrightarrow{CP}$. <i>C</i> . <i>P</i> and <i>A</i> do not lie on a straight	A1	
	line.		
8(b)(iv)	2		
	3	B1 [12]	
9(a)	$x = \frac{3.41}{2.92} \times 2.77$		Accept 3.26 and 3.27 as answers.
	= \$3.234		
	= \$3.23 (2d.p)	B1	
	OR		
	$x = \frac{3.41}{2.69} \times 2.55$		
	= \$3.232		
	= \$3.23 (2d.p)		
9(b)	Fuel consumption of car = 47×0.42554		
	= 20.00038 km / l	M1 (either fuel consumption of car or	
	Fuel tank capacity	fuel tank capacity is correct)	

$=11.0952 \times 3.7855$		
= 42,00087961		
Amount of fuel used		
$= 30\% \times 42.0008796$		
=12,60026388/		
12:00020300		
Alternative solution:		
Fuel consumption		
$244 = \frac{19.364}{2.4257}$		
$=\frac{0.42554}{12.60026388}$ 0.42554		
= 19.364 km/l = 45.5 mpg < 4/mpg		
$10.4 \text{ km}/l$ (22 f) < 20.00028 \mum /l	M1	
= 19.4 km/l (38.1) < 20.00038 km/l		
Since freel consumption is lesson May One slaim for	A 1	
Since fuel consumption is lesser, with Ong claim for	AI	
ider consumption was incorrect.		
Total discount		
$=(\$2, 92, -\$2, 77) \times 12,60026388$		
- \$1 800030582		
- \$1.890039382	M1	
Extra amount of fuel		
1.890039582		
$=\frac{1}{277}$		
- 0.68232/758/	241	
-0.002327750i	M11	
Extra distance		

Total	90 marks	
	A1	
Mrs Ong claim for the extra distance was incorrect.	M1	
=45.5km (3s.f)		
= 45.489		
Extra distance = 20.00038×2.2744158		
2.271.150	M1	
= 2.77441581		
$=\frac{6.30013194}{2.77}$		
Extra amount of fuel		
=\$6.30013194	M1	
Total discount = $($2.92 - $2.77) \times 42.0008796$		
OR		
	A1 [8]	
Mrs Ong claim for the extra distance was correct.	M1	
-13.64m (3s f)		
- 13 64675		
$= 20.00038 \times 0.682324758$		

Q4(b)

Page 18 of 18