1	В	11	В	21	Α
2	D	12	Α	22	В
3	D	13	Α	23	Α
4	Α	14	В	24	В
5	C	15	В	25	В
6	С	16	Α	26	D
7	В	17	С	27	С
8	Α	18	С	28	D
9	D	19	D	29	Α
10	В	20	С	30	D

Suggested solutions to 2020 A-Level H2 Physics Paper 1

Q	Ans	Working
1	В	$V = \frac{4}{\pi}\pi r^3$
		$\Delta V = \Delta r$
		$\frac{1}{V} = 3\frac{1}{r}$
		A graph of $\frac{\Delta V}{V}$ against $\frac{\Delta r}{r}$ will produce a straight line graph passing through
		the origin with a gradient of 3.
2	D	Both weight of car and normal contact force on car are forces acting on
		the same object – car. For action-reaction force pair, one of the conditions
3	D	Is for the forces to be acting of different bodies. $[F] = [m^{-1}] + m^{-2}$
	-	Units for stress: $\frac{1}{[A]} = \frac{1}{[m^2]} = J M^{-3}$
		There is no units for strain (length / length).
		stress) × (units for strain)
4	Α	Area under v-t graph is equivalent to displacement.
		To overtake, both vehicles must have travelled the same displacement to
		be side-by-side.
5	C	P+Q+R = Q+R+S Pelative velocity of bicycle to car = $n + n = n$
J	Ŭ	Vector of velocity of bicycle + negative vector of velocity of car
6	С	In order for yacht to be in equilibrium, the net torque on the yacht should
		be zero. Hence the torque due to vertical and horizontal force-pairs should
7	B	For torque due to a couple (force pair where both forces are equal
ľ		opposite and parallel). Force $\times d_{\perp}$
		The perpendicular component of distance to the force is $d\sin\theta$
8	Α	There are 5 forces on the hot air balloon:
		Upwards: Upthrust due to cold air being displaced.
		due to the rope
		$W_{\text{hot air}} + W_{\text{hasket}} + 2T = U_{\text{cold air}}$
		$V \rho_{\text{hot air}} g + m_{\text{basket}} g + 2T = V \rho_{\text{cold air}} g$
9	D	Power (useful) by driving force = $Fv = 1600(22) = 35.2$ kW

		Thermal power from fuel = $\frac{E}{t} = \frac{3.3 \times 10^6}{60} = 55 \text{ kW}$
		Efficiency = $\frac{35.2}{55} \times 100\% = 64\%$
10	В	$\boldsymbol{a} = \boldsymbol{r}\boldsymbol{\omega}^2 = \boldsymbol{r} \left(\frac{2\pi}{T}\right)^2$
		$= (3.85 \times 10^8) \left(\frac{2\pi}{27.3(24 \times 60 \times 60)}\right)^2 = 2.73 \times 10^{-3} \text{ m s}^{-2}$
11	В	$\omega = \left(\frac{2\pi}{T}\right) = \left(\frac{2\pi}{60 \times 60}\right) = 1.75 \times 10^{-3} \text{ rad s}^{-2}$
		Note: Minute hand of analogue clock takes 1 hour (3600 s) to complete one revolution
12	Α	Increase in $E_p = E_{p, final} - E_{p, initial}$
		$= \left(-\frac{Gm_1m_2}{2r}\right) - \left(-\frac{Gm_1m_2}{r}\right) = \left(\frac{Gm_1m_2}{2r}\right)$
13	Α	$g = \frac{GM}{m^2} = \frac{(6.67 \times 10^{-11})(2 \times 10^{31})}{(150 - 10^{9})^2}$
14	В	$\frac{r^2}{(150 \times 10^3)^2}$ $nV = nRT$
	_	$T = \frac{p}{V}V$
		nR'
		straight line graph for L to M with positive gradient
		Note : MN is not the correct answer as temperature is decreasing along
		MIN. MIN IS not isothermal change.
15	В	Since volume is constant in experiment 1, the work done by the gas is
		zero. Hence by first law of thermodynamics, the increase in internal
16	Α	Maximum potential energy = maximum kinetic energy
		$F = \frac{1}{2}m\omega^2 r_{\rm e}^2$
		$\frac{1}{2} \frac{1}{(x_0 - x_0)^2}$
		$\frac{-\text{Hew}}{E} = \left(\frac{x_{0,\text{Hew}}}{x_{0}}\right)$
		$\overline{F-E}$
		$x_{0,\text{new}} = x_0 \sqrt{\frac{\mu}{E}} = 0.866 x_0$
		Since the question asks for the change in amplitude , it will be 0.134 <i>x</i> .
		Note : Need to be careful in reading guestion. New energy is E/4 not
		reduced by E/4.
17	С	The two graphs are put of phase by a guarter of a sucle $\frac{1}{2}$
18	С С	Between two points of compression (at 4 m and 12 m), it is equivalent to a
10		distance of 1 wavelength.
		$\lambda = 8 \text{ m}$

		$f = \frac{v}{\lambda} = \frac{12}{8} = 1.5 \text{ Hz}$
19	D	In single slit diffraction equation: $\sin\theta = \frac{\lambda}{\tau}$
		The angle θ is the angle between the central maximum and the first minimum. Hence, the angle θ is equivalent to a distance of x/2 on the screen.
		By using a right-angled triangle, we can relate x, D and θ : $\sin \theta = \frac{\overline{2}}{D} = \frac{x}{2D}$
		Hence, $\frac{\lambda}{b} = \frac{x}{2D}$ and c = f λ
		$b = \frac{2Dc}{fx}$
		Note : x is the width of the central maximum. To use equation correctly, this a factor of 2 needs to be included.
20	С	$V = \frac{Q}{Q}$
		$4\pi\epsilon_0 d$ Since V is inversely proportional to d, electric potential V will be doubled when d is balved
21	Α	$\frac{Q}{E} = \frac{Q}{1}$
		$E = \frac{1}{4\pi\epsilon_0} \frac{1}{r^2}$
		For a graph of <i>E</i> against $\frac{1}{r^2}$,
		, , Q /
		gradient = $\frac{1}{4\pi\varepsilon_0}$
22	R	
	5	$P = \frac{V^{-}}{R} \qquad \qquad R = \frac{\rho \ell}{\pi \left(\frac{d}{2}\right)^{2}} = \frac{4\rho \ell}{\pi d^{2}}$
	D	$P = \frac{V^{-}}{R} \qquad R = \frac{\rho \ell}{\pi \left(\frac{d}{2}\right)^{2}} = \frac{4\rho \ell}{\pi d^{2}}$ $V^{2} \pi d^{2}$
	D	$P = \frac{V^{2}}{R} \qquad R = \frac{\rho \ell}{\pi \left(\frac{d}{2}\right)^{2}} = \frac{4\rho \ell}{\pi d^{2}}$ $P = \frac{V^{2}\pi d^{2}}{4\rho \ell}$
		$P = \frac{V^{-}}{R} \qquad R = \frac{\rho \ell}{\pi \left(\frac{d}{2}\right)^{2}} = \frac{4\rho \ell}{\pi d^{2}}$ $P = \frac{V^{2}\pi d^{2}}{4\rho \ell}$ $\frac{P_{X}}{P_{Y}} = \left(\frac{d_{X}}{d_{Y}}\right)^{2}$
		$P = \frac{V^{-}}{R} \qquad R = \frac{\rho \ell}{\pi \left(\frac{d}{2}\right)^{2}} = \frac{4\rho \ell}{\pi d^{2}}$ $P = \frac{V^{2} \pi d^{2}}{4\rho \ell}$ $\frac{P_{X}}{P_{Y}} = \left(\frac{d_{X}}{d_{Y}}\right)^{2}$ $\frac{1.0}{1.5} = \left(\frac{d_{X}}{d_{Y}}\right)^{2}$
23	A	$P = \frac{V^{2}}{R} \qquad R = \frac{\rho \ell}{\pi \left(\frac{d}{2}\right)^{2}} = \frac{4\rho \ell}{\pi d^{2}}$ $P = \frac{V^{2} \pi d^{2}}{4\rho \ell}$ $\frac{P_{X}}{P_{Y}} = \left(\frac{d_{X}}{d_{Y}}\right)^{2}$ $\frac{1.0}{1.5} = \left(\frac{d_{X}}{d_{Y}}\right)^{2}$ $I_{\text{circuit 1}} = \frac{E}{2R + r}$
23	A	$P = \frac{V^{2}}{R} \qquad R = \frac{\rho \ell}{\pi \left(\frac{d}{2}\right)^{2}} = \frac{4\rho \ell}{\pi d^{2}}$ $P = \frac{V^{2} \pi d^{2}}{4\rho \ell}$ $\frac{P_{X}}{P_{Y}} = \left(\frac{d_{X}}{d_{Y}}\right)^{2}$ $\frac{1.0}{1.5} = \left(\frac{d_{X}}{d_{Y}}\right)^{2}$ $I_{\text{circuit 1}} = \frac{E}{2R + r}$ $I_{\text{circuit 2}} = \frac{E}{0.5R + r} \qquad [\text{note that 2 } R \text{ are parallel}]$
23	A	$P = \frac{V^{-}}{R} \qquad R = \frac{\rho \ell}{\pi \left(\frac{d}{2}\right)^{2}} = \frac{4\rho \ell}{\pi d^{2}}$ $P = \frac{V^{2} \pi d^{2}}{4\rho \ell}$ $\frac{P_{x}}{P_{y}} = \left(\frac{d_{x}}{d_{y}}\right)^{2}$ $\frac{1.0}{1.5} = \left(\frac{d_{x}}{d_{y}}\right)^{2}$ $I_{\text{circuit 1}} = \frac{E}{2R + r}$ $I_{\text{circuit 2}} = \frac{E}{0.5R + r} \qquad [\text{note that 2 } R \text{ are parallel}]$ $\frac{E}{0.5R + r} = 2 \times \left(\frac{E}{2R + r}\right)$
23	A	$P = \frac{V^{-}}{R} \qquad R = \frac{\rho \ell}{\pi \left(\frac{d}{2}\right)^{2}} = \frac{4\rho \ell}{\pi d^{2}}$ $P = \frac{V^{2}\pi d^{2}}{4\rho \ell}$ $\frac{P_{x}}{P_{y}} = \left(\frac{d_{x}}{d_{y}}\right)^{2}$ $\frac{1.0}{1.5} = \left(\frac{d_{x}}{d_{y}}\right)^{2}$ $I_{\text{circuit 1}} = \frac{E}{2R + r}$ $I_{\text{circuit 2}} = \frac{E}{0.5R + r} \qquad \text{[note that 2 R are parallel]}$ $\frac{E}{0.5R + r} = 2 \times \left(\frac{E}{2R + r}\right)$ Use potential divider rule.
23	A	$P = \frac{V^{-}}{R} \qquad R = \frac{\rho \ell}{\pi \left(\frac{d}{2}\right)^{2}} = \frac{4\rho \ell}{\pi d^{2}}$ $P = \frac{V^{2} \pi d^{2}}{4\rho \ell}$ $\frac{P_{x}}{P_{Y}} = \left(\frac{d_{x}}{d_{Y}}\right)^{2}$ $\frac{1.0}{1.5} = \left(\frac{d_{x}}{d_{Y}}\right)^{2}$ $I_{\text{circuit 1}} = \frac{E}{2R + r}$ $I_{\text{circuit 2}} = \frac{E}{0.5R + r} \qquad \text{[note that 2 R are parallel]}$ $\frac{E}{0.5R + r} = 2 \times \left(\frac{E}{2R + r}\right)$ Use potential divider rule. When X slides to the top end nearest to Y, the resistance across XY is 0 and p.d. = 0
23	A	$P = \frac{V^{-}}{R} \qquad R = \frac{\rho \ell}{\pi (d_{2}^{\prime})^{2}} = \frac{4\rho \ell}{\pi d^{2}}$ $P = \frac{V^{2} \pi d^{2}}{4\rho \ell}$ $\frac{P_{x}}{P_{Y}} = \left(\frac{d_{x}}{d_{Y}}\right)^{2}$ $\frac{1.0}{1.5} = \left(\frac{d_{x}}{d_{Y}}\right)^{2}$ $I_{\text{circuit 1}} = \frac{E}{2R + r}$ $I_{\text{circuit 2}} = \frac{E}{0.5R + r} \qquad \text{[note that 2 R are parallel]}$ $\frac{E}{0.5R + r} = 2 \times \left(\frac{E}{2R + r}\right)$ Use potential divider rule. When X slides to the top end nearest to Y, the resistance across XY is 0 and p.d. = 0. When X slides to the bottom end furthest to Y, the resistance across XY is 0
23	A	$P = \frac{V^{-}}{R} \qquad R = \frac{\rho \ell}{\pi (d/2)^{2}} = \frac{4\rho \ell}{\pi d^{2}}$ $P = \frac{V^{2} \pi d^{2}}{4\rho \ell}$ $\frac{P_{x}}{P_{y}} = \left(\frac{d_{x}}{d_{y}}\right)^{2}$ $\frac{1.0}{1.5} = \left(\frac{d_{x}}{d_{y}}\right)^{2}$ $I_{\text{circuit 1}} = \frac{E}{2R + r}$ $I_{\text{circuit 2}} = \frac{E}{0.5R + r} \qquad \text{[note that 2 R are parallel]}$ $\frac{E}{0.5R + r} = 2 \times \left(\frac{E}{2R + r}\right)$ Use potential divider rule. When X slides to the top end nearest to Y, the resistance across XY is 0 and p.d. = 0. When X slides to the bottom end furthest to Y, the resistance across XY is R and p.d. = \frac{R}{2R} \times 6.0 = 3.0 \text{ V}

		$t = \frac{s_x}{u_x} = \frac{5 \times 10^{-2}}{1.97 \times 10^7}$			
		Then vertical components to find the change in height:			
		$\Delta h = ut + \frac{1}{2}at^2 = 0 + \frac{1}{2}\left(\frac{F}{m}\right)t^2$			
		$=\frac{1}{2}\left(\frac{Vq}{dm}\right)\left(\frac{5\times10^{-2}}{1.97\times10^{7}}\right)$			
26	D	Flux linkages= NBA			
		$= 10(2.1 \times 10^{-5})(20 \times 20)$			
27	С	$P_{\rm avg} = I_{\rm r.m.s.}^2 R$			
28	D	E_1 is higher energy level since a photon released required de-excitation			
		from higher to lower energy level.			
		$E_1 - E_2 = \frac{\pi c}{\lambda}$			
29	Α	Use mass defect and $E = \Delta m \cdot c^2$			
		$E = \left(m_{\frac{235}{92}U} + m_{0n} - m - m_{\frac{92}{36}Kr} - 3m_{0n}\right) \cdot c^{2}$			
30	D	$N = N_0 e^{-\lambda t}$			
		$(5-3) \times 10^{12} = 5 \times 10^{12} e^{-(1.15 \times 10^{-8})t}$			