

1(a)	Consider $(\sqrt{2}, 2, 0)$ and $(\sqrt{3}, -\sqrt{6}, 0) \in W$.
	$(\sqrt{2},2,0)+(\sqrt{3},-\sqrt{6},0)=(\sqrt{2}+\sqrt{3},2-\sqrt{6},0)$
	$2(\sqrt{2}+\sqrt{3})^2-(2-\sqrt{6})^2$
	$= 2\left(2+2\sqrt{6}+3\right) - \left(4-4\sqrt{6}+6\right)$
	$=8\sqrt{6} \neq 0$
	$\therefore W$ is not closed under addition.
	W is not a subspace of \mathbb{R}^3 .
(b)	Consider (x_1, y_1, z_1) and $(x_2, y_2, z_2) \in V$
	$(x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2)$
	Since
	$x_1 + x_2 = 2y_1 + 2y_2 = 2(y_1 + y_2)$ and
	$y_1 + y_2 - (z_1 + z_2) = y_1 - z_1 + (y_2 - z_2) = 0 + 0 = 0$
	V is closed under addition.
	Consider $k(x_1, y_1, z_1) = (kx_1, ky_1, kz_1)$ where $k \in \mathbb{R}$
	Since $kx_1 = k(2y_1) = 2(ky_1)$ and $ky_1 - kz_1 = k(y_1 - z_1) = 0$
	V is closed under scalar multiplication
	Also $(0, 0, 0)$ belongs to V $\therefore V$ is a subspace of \mathbb{R}^3 .

2

$$d = 2r^{2} - 2 = 2(r^{2} - 1)$$
Since *S* exists, $|r| < 1$
Hence $r^{2} - 1 < 0$ and $d < 0$ (shown)
 $2r^{6} - 2r^{2} = 2r^{2} - 2$
 $r^{6} - 2r^{2} + 1 = 0$
Let $u = r^{2}$: $u^{3} - 2u + 1 = 0$
 $(u - 1)(u^{2} + u - 1) = 0$
Hence $u = 1$ or $u = \frac{-1 \pm \sqrt{5}}{2}$
Since $|r| < 1$, $0 < u < 1$; hence $u = \frac{\sqrt{5} - 1}{2}$
 $d = 2(r^{2} - 1) = 2(u - 1) = \sqrt{5} - 3$

TEMASEK JUNIOR COLLEGE	Promotion Examination Solution
3(a) (i)	(a) (i) Since P is a point on E, $F_1P + F_2P = 2a$ for all points P.
	F_1 is $(c, 0)$ and F_2 is $(-c, 0)$, where $c = \sqrt{a^2 - b^2}$
	Hence the perimeter is $2a + 2\sqrt{a^2 - b^2}$
(a)(ii)	If E , DE , formed on aquilatoral triangle, E , $E_{\rm r} = E$, $D = E$, $D = g$
$(a)(\Pi)$	If F_1F_2 forms an equilateral triangle, $F_1F_2 - F_1F - F_2F - u$.
	Hence $2ae = a \Rightarrow e = \frac{1}{2}$.
	Therefore equations of directrices is $x = \pm \frac{a}{\left(\frac{1}{2}\right)} = \pm 2a$
(b) (i)	$r = \frac{3}{2 + 2\sin\theta} = \frac{\frac{3}{2}}{1 + \sin\theta}.$ Hence $e = 1$ Therefore the conic is a parabola.
(ii)	The equation of the directrix is $y = \frac{3}{2}$.

4(a)	k is the net growth rate and N is the carrying capacity of the environment.
(b)	$\frac{dP}{dt} = kP\left(1 - \frac{P}{4}\right) \Rightarrow \int \frac{1}{P(4 - P)} dP = \int \frac{k}{4} dt$ $\Rightarrow \frac{1}{4} \int \left(\frac{1}{P} + \frac{1}{4 - P}\right) dP = \int \frac{k}{4} dt$ $\Rightarrow \ln P - \ln 4 - P = kt + C \text{ where } C \text{ is a real number}$ $\Rightarrow \frac{P}{4 - P} = Ae^{kt} \text{ where } A = \pm e^{C}$
	When $t = 0, P = 2 \Rightarrow A = 1$ $\Rightarrow P = (4 - P)e^{kt}$ Ae^{kt}
	$\Rightarrow P = \frac{4c}{1 + e^{kt}}$
(c)	$P = \frac{4e^{kt}}{1 + e^{kt}} = \frac{4}{e^{-kt} + 1}$ If $k = 0.6$, as $t \to \infty$, $e^{-kt} \to 0$, so $P \to 4$ In the long run, the population of birds will increase and stabilize at 4,000.

5(a)	[Solution]
	$u_n = u_{n-1} + \frac{3}{4}u_{n-2}, \ n \ge 3$
	$u_1 = 40, \ u_2 = 50$
(b)	$u_n = u_{n-1} + \frac{3}{4}u_{n-2}$
	Characteristic equation is
	$4m^2 - 4m - 3 = 0$
	$m = -\frac{1}{2} \text{ or } \frac{3}{2}$
	Thus, the general solution is $u_n = A\left(-\frac{1}{2}\right)^n + B\left(\frac{3}{2}\right)^n$.
	Since $u_1 = 40$, $\left(-\frac{1}{2}\right)A + \left(\frac{3}{2}\right)B = 40 (1)$
	Since $u_2 = 50$, $\left(-\frac{1}{2}\right)^2 A + \left(\frac{3}{2}\right)^2 B = 50 (2)$
	Solving by GC, $A = -10, B = \frac{70}{3}$
	$u_n = -10\left(-\frac{1}{2}\right)^n + \frac{70}{3}\left(\frac{3}{2}\right)^n, n \ge 1$

6(a)	Consider $Av = \lambda v$
	where v is eigenvector of A and λ is corresponding eigenvalue.
	$\begin{pmatrix} 0 & -2 & 2 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix}$
	$\begin{vmatrix} & -k & 1 & k \\ & 1 & = -2 & 1 \\ \Rightarrow & -k+1 & = -2 & 1 \end{vmatrix}$
	$ \begin{pmatrix} -1 & 1 & k \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} $
	$\therefore -k+1 = -2 \Longrightarrow k = 3 \text{ (Shown)}$
(b)	$(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = 0$
	$\det(\mathbf{A} - \lambda \mathbf{I}) = 0$
	$\begin{pmatrix} -\lambda & -2 & 2 \end{pmatrix}$
	$\begin{vmatrix} \det & -3 & 1 - \lambda & 3 \end{vmatrix} = 0$
	$\begin{pmatrix} -1 & 1 & 3-\lambda \end{pmatrix}$
	$\begin{pmatrix} 0 & -2-\lambda & 2-3\lambda+\lambda^2 \end{pmatrix}$
	$\begin{vmatrix} \det & -3 & 1-\lambda & 3 \end{vmatrix} = 0$
	$\begin{pmatrix} -1 & 1 & 3-\lambda \end{pmatrix}$
	$-(-2-\lambda)(-9+3\lambda+3)+(2-3\lambda+\lambda^{2})(-3+1-\lambda)=0$
	$(2+\lambda)(3\lambda-6)-(2-3\lambda+\lambda^2)(2+\lambda)=0$
	$(2+\lambda)(3\lambda-6-2+3\lambda-\lambda^2)=0$
	$(\lambda+2)(\lambda^2-6\lambda+8)=0$
	$(\lambda+2)(\lambda-2)(\lambda-4) = 0$
	$\lambda = 2,4 \text{ and } -2$
	When $\lambda = 2$, $(\mathbf{A} - 2\mathbf{I})\mathbf{v} = 0$
	$\begin{pmatrix} -2 & -2 & 2 \end{pmatrix}$
	$\begin{vmatrix} -3 & -1 & 3 \end{vmatrix} \mathbf{v} = 0$
	$\begin{pmatrix} -1 \\ -1 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
	$\begin{vmatrix} -1 \\ 1 \end{vmatrix} \times \begin{vmatrix} 1 \\ 1 \end{vmatrix} = -\begin{vmatrix} 0 \\ 1 \end{vmatrix}$ \therefore eigenvector = $\begin{vmatrix} 0 \\ 1 \end{vmatrix}$
	When $\lambda = 4$, $(\mathbf{A} - 4\mathbf{I})\mathbf{v} = 0$
	$\begin{pmatrix} -4 & -2 & 2 \end{pmatrix}$
	$ \begin{vmatrix} -3 & -3 & 3 \\ -1 & 1 & -1 \end{vmatrix} \mathbf{v} = 0 $

TEMASEK JUNIOR COLLEGE	Promotion Examination Solution
	$\begin{pmatrix} -1\\-1\\1 \end{pmatrix} \times \begin{pmatrix} -1\\1\\-1 \end{pmatrix} = \begin{pmatrix} 0\\-2\\-2 \end{pmatrix} \therefore \text{ eigenvector} = \begin{pmatrix} 0\\1\\1 \end{pmatrix}$
	$\mathbf{D} = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix} \text{ and } \mathbf{Q} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$
(c)	
	$\mathbf{B} = (\mathbf{A} - 3\mathbf{I})^4$
	$(a a a a a a a a)^4$
	$= (\mathbf{Q}\mathbf{D}\mathbf{Q}^{T} - \mathbf{Q}\mathbf{S}\mathbf{I}\mathbf{Q}^{T})$
	$= \left(\mathbf{Q} \left(\mathbf{D} - 3\mathbf{I} \right) \mathbf{Q}^{-1} \right)^4$
	$= (\mathbf{Q}(\mathbf{D}-3\mathbf{I})\mathbf{Q}^{-1})(\mathbf{Q}(\mathbf{D}-3\mathbf{I})\mathbf{Q}^{-1})(\mathbf{Q}(\mathbf{D}-3\mathbf{I})\mathbf{Q}^{-1})(\mathbf{Q}(\mathbf{D}-3\mathbf{I})\mathbf{Q}^{-1})$
	$= \mathbf{Q} \left(\mathbf{D} - 3\mathbf{I} \right)^4 \mathbf{Q}^{-1}$
	Hence
	$\mathbf{P} = \mathbf{Q} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$
	$\mathbf{C} = (\mathbf{D} - 3\mathbf{I})^{4} = \begin{pmatrix} -5 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{4} = \begin{pmatrix} 625 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

9(a)	$\frac{\pi}{1}$ $\frac{\pi}{1}$
	$I = \int_{1}^{4} \tan^{n} r dr = \int_{1}^{4} \tan^{n-2} r \tan^{2} r dr$
	$r_n = \int_0^{\infty} \tan x dx = \int_0^{\infty} \tan x dx$
	<u>π</u>
	$\int_{1}^{4} 4 \ln (n^{-2} \ln (n^{-2} \ln n^{-2})) dx$
	$=\int_{a} \tan x (\sec x - 1) dx$
	π
	$\begin{bmatrix} 1 \\ n-1 \end{bmatrix} = \begin{bmatrix} \frac{\pi}{4} & \frac{\pi}{4} \\ n-2 \end{bmatrix} = \begin{bmatrix} 1 \\ n-2 \end{bmatrix}$
	$= \left \frac{1}{n-1} \tan^{n-1} x \right _{1} - \int \tan^{n-2} x dx$
	$=\frac{1}{1}-I_{n-2}$ (shown)
	n-1
	$\frac{\pi}{4}$ π $-$ 1
	$I_1 = \int \tan x dx = \left[\ln(\sec x) \right]_0^{\frac{1}{4}} = \ln \sqrt{2} = \frac{1}{2} \ln 2$
	$I = \frac{1}{I} - I$
	13 3-1 11
	$-\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{2}$
	$-\frac{1}{2}-\frac{1}{2}$ m 2
(b)	Using shell method,
	$(5\pi)^2$
	Volume = $\pi \left[\frac{3\pi}{2} \right] (5\pi) - 2\pi \int x^2 (\sin x + 1) dx$
	$\begin{pmatrix} 2 \\ 5\pi \end{pmatrix} = 0$
	$-\frac{125\pi^4}{2}$ - $2\pi \int_{-\infty}^{\frac{1}{2}} r^2 \sin r dr - 2\pi \int_{-\infty}^{\frac{1}{2}} r^2 dr$
	$=\frac{-\frac{1}{4}}{4} \frac{2\pi \int_{0}^{\pi} x \sin x dx}{2\pi \int_{0}^{\pi} x dx}$
	$\frac{5\pi}{2}$ $\begin{bmatrix} 3 \end{bmatrix}^{\frac{5\pi}{2}}$ 105 4
	$2\pi \int x^2 dx = 2\pi \left \frac{x^2}{2\pi} \right = \frac{125\pi^2}{2\pi^2}$
	$\begin{bmatrix} \mathbf{J} \\ 0 \end{bmatrix}_0 \qquad \begin{bmatrix} \mathbf{J} \end{bmatrix}_0 \qquad 12$
	$\frac{5\pi}{2}$ $\left(-\frac{5\pi}{2} \right)$
	$2\pi \int x^2 \sin x dx = 2\pi \int x^2 \cos x _0^2 + \int 2x \cos x dx$
	$\begin{pmatrix} \frac{5\pi}{2} \\ 5\pi \end{pmatrix}$
	$=2\pi \left[0 + \left[2x \sin x \right]_{0}^{\frac{\pi}{2}} - \right] 2 \sin x dx \right]$
	$=2\pi(5\pi+[2\cos r]^{\frac{5\pi}{2}})$
	$=2\pi(5\pi-2)$
	Hence required volume = $\frac{125\pi^4}{2\pi(5-2)} = \frac{125\pi^4}{125\pi^4} = \frac{125\pi^4}{10^{-2}} = 10^{-2}$
	Hence required volume $-\frac{1}{4} - 2\pi(3\pi - 2) - \frac{1}{12} = \frac{-10\pi^2 + 4\pi}{6}$
	units ³

