
1(a)	2 .	- GC is not allowed and given
1(a)	$w^3 = 1$	2 marks, the intent is not to
	$w^3 - 1 = 0$	solve for <i>w</i> .
	$(w-1)(w^2+w+1)=0$	
	Since w is non-real, it satisfies $w^2 + w + 1 = 0$.	
(b)	$\therefore w^2 + w = -1.$	- Make good use of result in
(D)	$(1+2w+3w^2)(1+2w^2+3w)=3$	(a) to simplify.
	LHS: $\left[1 + 2(w + w^2) + w^2\right] \left[1 + 2(w^2 + w) + w\right]$	
	$= \left[1 + 2(-1) + w^2\right] \left[1 + 2(-1) + w\right]$	
	$=\left(w^2-1\right)\left(w-1\right)$	
	$= w^3 - (w^2 + w) + 1$	
	=1-(-1)+1	
	=3	
	Alternative LHS = $(1 + 2w + 3w^2) + (2w^2 + 4w^3 + 6w^4) + (3w + 6w^2 + 9w^3)$	
	$=1+5w+11w^2+13w^3+6w^4$	-Note the efficient way to evaluate w^4 .
	$=1+5w+11w^2+13+6w \ (\because w^3=1 \Rightarrow w^4=w)$	Crafadic // .
	$=14+11w+11w^2$	
	=14+11(-1)	
	= 3	
2(a)	= RHS	
	distance from (x, y) to $(0, 2d) = \sqrt{x^2 + (y - 2d)^2}$ distance from (x, y) to line $= x - d $ $\sqrt{x^2 + (y - 2d)^2} = x - d $ $x^2 + (y - 2d)^2 = (x - d)^2$ $(y - 2d)^2 = (x - d)^2 - x^2$ $= (x - d - x)(x - d + x)$ $= -d(2x - d)$ $(y - 2d)^2 = d(d - 2x) \text{ (shown)}$	From definition, $d > x$. x - d = d - x

Volume =
$$2\pi \int_{d}^{3d} xy \, dy$$

= $2\pi \int_{d}^{3d} xy \, dy$
= $2\pi \int_{d}^{3d} xy \, dy$
= $2\pi \int_{d}^{3d} \left(\frac{d}{2} - \frac{(y - 2d)^{2}}{2d}\right) y \, dy$
= $\pi d \int_{d}^{3d} y \, dy - \frac{\pi}{d} \int_{d}^{3d} y (y - 2d)^{2} \, dy$
= $\pi d \left[\frac{y^{2}}{2}\right]_{d}^{3d} - \frac{\pi}{d} \left[\int_{d}^{3d} (y - 2d)(y - 2d)^{2} + 2d(y - 2d)^{2} \, dy\right]$
= $\frac{\pi d}{2} \left(9d^{2} - d^{2}\right) - \frac{\pi}{d} \left[\frac{(y - 2d)^{4}}{4}\right]_{d}^{3d} - 2\pi \left[\frac{(y - 2d)^{3}}{3}\right]_{d}^{3d}$
= $4\pi d^{3} - \frac{\pi}{4d} \left(d^{4} - d^{4}\right) - \frac{2\pi}{3} \left(d^{3} + d^{3}\right)$
= $\frac{8}{3}\pi d^{3}$ cu. units

Alternative (Disc Method)

$$(y-2d)^2 = d(d-2x) \Rightarrow y = 2d \pm \sqrt{d(d-2x)}$$

Required volume

= volume generated by upper curve y_U – volume generated by lower curve y_L

$$= \int_{0}^{\frac{d}{2}} \pi y_{u}^{2} dx - \int_{0}^{\frac{d}{2}} \pi y_{L}^{2} dx$$

$$= \pi \int_{0}^{\frac{d}{2}} \left[2d + \sqrt{d(d - 2x)} \right]^{2} - \left[2d - \sqrt{d(d - 2x)} \right]^{2} dx$$

$$= \pi \int_{0}^{\frac{d}{2}} 8d\sqrt{d(d - 2x)} dx$$

$$= 8\pi d \times \frac{1}{-2d} \int_{0}^{\frac{d}{2}} -2d\sqrt{d(d - 2x)} dx$$

$$= -4\pi \frac{\left[d(d - 2x) \right]^{3/2}}{3/2} \Big|_{0}^{\frac{d}{2}}$$

$$= -\frac{8\pi}{3} \left[0 - d^{3} \right]$$

$$= \frac{8\pi}{3} d^{3} \text{ cu. units}$$

Alternative:

Expand $y(y-2d)^2$; the method shown is simpler to evaluate limits.

2(-)		
3(a)	$\frac{2k}{2k+1} - \frac{2k+2}{2k+3} = \frac{2k(2k+3) - (2k+2)(2k+1)}{(2k+1)(2k+3)}$	
	$=\frac{4k^2+6k-\left(4k^2+6k+2\right)}{(2k+1)(2k+3)}$	
	$= \frac{-2}{(2k+1)(2k+3)} < 0 (\because (2k+1) & (2k+3) > 0 \text{ for } k > 0)$	
	$\therefore \frac{2k}{2k+1} < \frac{2k+2}{2k+3}$	
	21 1 21 3	
(b)	Let P_n be the proposition that $u_n \le \left(\frac{2n}{2n+1}\right)^n$, $n \in \mathbb{Z}^+$.	
	Consider P ₁ :	
	LHS = $u_1 = \frac{2}{3}$ (given)	
	RHS = $\frac{2(1)}{2(1)+1} = \frac{2}{3}$	
	Hence $u_1 \leq \frac{2}{3}$	
	$\therefore P_1$ is true	
	/ \k	
	Assume that P_k is true for some positive integer k , $u_k \le \left(\frac{2k}{2k+1}\right)^k$.	
	To show P_{k+1} is true, $u_{k+1} \le \left(\frac{2k+2}{2k+3}\right)^k$	
	LHS of P_{k+1}	
	$=u_{k+1}$	
	$=\frac{2k+2}{2k+3}u_k$	
	$\leq \left(\frac{2k+2}{2k+3}\right) \left(\frac{2k}{2k+1}\right)^k$	
	$\leq \left(\frac{2k+2}{2k+3}\right) \left(\frac{2k+2}{2k+3}\right)^k \text{since } \frac{2k}{2k+1} < \left(\frac{2k+2}{2k+3}\right)$	
	$= \left(\frac{2k+2}{2k+3}\right)^{k+1}$	
	$\therefore u_{k+1} \le \left(\frac{2k+2}{2k+3}\right)^{k+1}$	
	$\therefore P_k \text{ is true} \Rightarrow P_{k+1} \text{ is true}$	\Rightarrow implies
	Since P_1 is true and P_k is true $\Rightarrow P_{k+1}$ is true,	\rightarrow tends to
	by mathematical induction, P_n is true for all positive integers n .	→ maps to
4(a)	$f(x) = x^k - a \implies f'(x) = kx^{k-1}$	
	By Newton-Raphson method, $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$	
	$\therefore x_{n+1} = x_n - \frac{x_n^k - a}{kx_n^{k-1}}$	

	$x_{n+1} = x_n - \frac{x_n^k}{kx_n^{k-1}} + \frac{a}{kx_n^{k-1}}$	
	$= x_n - \frac{x_n}{k} + \frac{a}{kx_n^{k-1}}$	A1
	$= \frac{1}{k} \left[(k-1)x_n + \frac{a}{x_n^{k-1}} \right] $ (shown)	
(b)	Since $\sqrt[3]{25} \approx \sqrt[3]{27} = 3$, 3 is a reasonable initial estimate.	B1
(c)	Using $x_1 = 3$, from GC,	
	$x_2 = 2.92592$	M1
	$x_3 = 2.924018$	
	$x_4 = 2.924017$	
	$x_5 = 2.924017$	A1
	$\therefore \sqrt[3]{23} = 2.924 \text{ (3 dp)}$	Al
(d)	$y = \frac{1}{3} \left(2x + \frac{25}{x^2} \right)$	Question stated to sketch suitable graphs (hence more than 1), so the graphs of $y = x$ and $y = \frac{1}{3} \left(2x + \frac{25}{x^2} \right)$ are expected
	3 J ₂₅ × × × × × × × × × × × × × × × × × × ×	
5	$v_{n+2} - 2v_{n+1} + 2v_n = 4$, $v_1 = 2$, $v_2 = 0$	It is totally unthinking
	$v_n + w_n = k \Longrightarrow v_n = k - w_n$	to write auxiliary equation as:
	$v_{n+2} - 2v_{n+1} + 2v_n = 4$ becomes	
	$(k - w_{n+2}) - 2(k - w_{n+1}) + 2(k - w_n) = 4$	$\lambda^2 - 2\lambda + 2 = 4.$
	$\therefore w_{n+2} - 2w_{n+1} + 2w_n = k - 4$	
	For this equation to be homogeneous, $k = 4$.	
	$w_1 = 4 - v_1 = 2, w_2 = 4 - v_2 = 4.$	
	$w_{n+2} - 2w_{n+1} + 2w_n = 0$	
	Auxiliary equation is $\lambda^2 - 2\lambda + 2 = 0$	
	$\lambda = \frac{2 \pm \sqrt{4 - 8}}{2} = 1 \pm i$	
	$\therefore w_n = \left(\sqrt{2}\right)^n \left[A \cos \frac{n\pi}{4} + B \sin \frac{n\pi}{4} \right]$	
	$W_1 = 2 \Longrightarrow 2 = A + B$	
	$v_2 = 4 \Rightarrow 4 = 2(0+B)$	
	$\Rightarrow B = 2$	
	$\Rightarrow A = 0$	
	$\therefore w_n = \left(\sqrt{2}\right)^n \left[2\sin\frac{n\pi}{4}\right]$	
	$\Rightarrow v_n = 4 - 2^{\frac{n}{2} + 1} \sin \frac{n\pi}{4}$	

(1)	(4.2)	
(b)	$v_{4n+2} = 4 - 2^{\frac{4n+2}{2}+1} \sin \frac{(4n+2)\pi}{4}$	
	$=4-2^{2n+2}\sin(2n+1)\frac{\pi}{2}$	
	2	
	$= \begin{cases} 4 - 2^{2n+2}(-1), & n \text{ is odd} \\ 4 - 2^{2n+2}(1), & n \text{ is even} \end{cases}$	
	$= \begin{cases} 4(1+4^n), & n \text{ is odd} \\ 4(1-4^n), & n \text{ is even} \end{cases}$	
6(a)	3π 5π	
	 	
	$\begin{vmatrix} y^2 \end{vmatrix} = 0 \qquad \begin{vmatrix} \frac{1}{4} \end{vmatrix} = 0$	
	$\frac{5\pi}{2} = \frac{5\pi}{2} = \frac{3\pi}{2} $	
	$\int_{\frac{3\pi}{4}}^{\frac{5\pi}{4}} y^2 dx \approx \frac{\frac{5\pi}{4} - \frac{3\pi}{4}}{6} \left[0 + 0 + 4 \left(\frac{1}{4} \right) \right] = \frac{1}{12} \pi \approx 0.262 \text{ (3sf)}$	
	4	
(b)		
	0=3月 (引引) (furthest point from 0)	
	(113) (3,4) ((c) (MS) potti (10010)	
	(- 2 ,11)	
	$\frac{(-\frac{1}{2},\Pi)}{(1,0)} \Rightarrow 0 = 0$	
	0 = 5n	
	7	
	Area of the inner loop = $\frac{1}{2} \int_{\frac{3\pi}{4}}^{\frac{5\pi}{4}} r^2 d\theta$	
	$\approx \frac{1}{2} \left(\frac{\pi}{12} \right) = \frac{\pi}{24} = 0.131 \text{ (3sf)}$	
7(a)	Locus is an ellipse.	
(b)	x G	
	OG + GF = 2a	
	$r + \sqrt{r^2 + 4c^2 - 4rc\cos\theta} = 2a \text{ (use cosine rule to find } GF)$	
	$\sqrt{r^2 + 4c^2 - 4rc\cos\theta} = 2a - r$	
	$r^2 + 4c^2 - 4rc\cos\theta = 4a^2 - 4ar + r^2$	
	$4ar\left(1-\frac{c}{a}\cos\theta\right) = 4(a^2-c^2)$	Al p
	$a = \frac{c^2}{c^2}$	A1 ~
	$r = \frac{a - \frac{c^2}{a}}{\left(1 - \frac{c}{a}\cos\theta\right)} \text{ (shown)}$	A1 q
	$\left(1-\frac{c}{a}\cos\theta\right)$	
	$\therefore p = a - \frac{c^2}{a} \text{ and } q = \frac{c}{a}.$	
	a a a	

(c) (d)	q represents the eccentricity of the conic section.
(a)	Arc length = $\int_0^{\pi} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$
	$= \int_0^{\pi} \sqrt{\left(\frac{a - \frac{c^2}{a}}{1 - \frac{c}{a}\cos\theta}\right)^2 + \frac{\left(\frac{c^2}{a} - a\right)^2 \left(\frac{c}{a}\sin\theta\right)^2}{\left(1 - \frac{c}{a}\cos\theta\right)^4}} d\theta$
	For small values of c , the ellipse approaches the circle with centre at O and radius a. \therefore arc length $\approx \pi a$.
	Alternative:
	$\lim_{c \to 0} \sqrt{\left(\frac{a - \frac{c^2}{a}}{1 - \frac{c}{a}\cos\theta}\right)^2 + \frac{\left(\frac{c^2}{a} - a\right)^2 \left(\frac{c}{a}\sin\theta\right)^2}{\left(1 - \frac{c}{a}\cos\theta\right)^4}} = \sqrt{\frac{a^2}{1} + \frac{a^2 \times 0}{1}} = a$
	\therefore arc length $\rightarrow \int_{0}^{\pi} a d\theta = a\pi$
0(-)	3 0
8(a) (b)	Number of ways = 12! = 479001600 WWWWW MMMMM
	MMMMMM WWWWMM
	Number of ways = $5! \times 7! + {}^{7}P_{5} \times 5! \times 2! \times 3 = 2419200$
(c)	Consider complementary cases involving two particular girls are adjacent to each other.
	Case 1: Both seated in front row $2! \times {}^{10}C_3 \times 4! \times 7! = 29030400$
	Case 2: Both seated in back row
	$2! \times {}^{10}C_5 \times 6! \times 5! = 43545600$
	Number of ways $= 479001600 - (29030400 + 43545600)$
	= 406425600
(d)	Number of ways = $\frac{{}^{12}C_4 \times {}^8C_4 \times {}^4C_4}{3!} = 5775$
9 (a)	$\overrightarrow{AB} = \begin{pmatrix} -6 \\ -4 \\ 0 \end{pmatrix} \overrightarrow{AC} = \begin{pmatrix} -6 \\ 0 \\ 1 \end{pmatrix}$
	$n = \begin{pmatrix} -6 \\ -4 \\ 0 \end{pmatrix} \times \begin{pmatrix} -6 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -4 \\ 6 \\ -24 \end{pmatrix} / / \begin{pmatrix} 2 \\ -3 \\ 12 \end{pmatrix}$
	$\therefore \text{ equation of plane } ABC \text{ is } \underbrace{r} \cdot \begin{pmatrix} 2 \\ -3 \\ 12 \end{pmatrix} = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -3 \\ 12 \end{pmatrix} = 12$
	Cartesian equation is $2x - 3y + 12z = 12$.

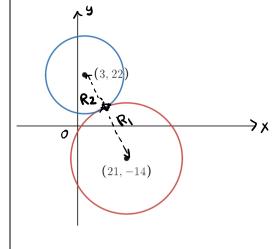
(b)	(2)	
	Consider line <i>OD</i> : $r = \lambda \begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix}, \lambda \in \mathbb{R}$	
	(3)	
	When <i>OD</i> intersects plane <i>ABC</i> , $2(2\lambda) - 3(0) + 12(3\lambda) = 12$.	Answer in coordinates
	$\lambda = 0.3$	form, not position vector.
	\therefore point of intersection is $(0.6, 0, 0.9)$.	
(c)	(0)(2)	
	Shortest distance = $ \overrightarrow{AD} \cdot \hat{\underline{n}} = \frac{1}{\sqrt{4+9+144}} \begin{bmatrix} 0 \\ 0 \\ 9 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -3 \\ 12 \end{bmatrix} = \frac{108}{\sqrt{157}}$ units.	
(d)	Area of plane $ABC = \frac{1}{2} \overrightarrow{AB} \times \overrightarrow{AC} = \frac{1}{2} \sqrt{628} = \sqrt{157}$	
	∴ Volume of tetrahedron = $\frac{1}{3} \times \sqrt{157} \times \frac{108}{\sqrt{157}} = 36$ cu. units.	
10(a)	$x = at^2$, $y = 2at$, $-\sqrt{a} \le t \le \sqrt{a}$	
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 2at, \frac{\mathrm{d}y}{\mathrm{d}t} = 2a$	
	\mathbf{u}_t \mathbf{u}_t	
	$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{t}$	
	Gradient of $TS = \frac{dy}{dx}\Big _{B} = \frac{1}{t}$	
	Gradient of $TS = \frac{1}{ dx _P} = \frac{1}{t}$	
	$\therefore \tan \theta = \text{gradient of } TS = \frac{1}{t} \text{ (shown)}$	
	Gradient of $QP = \frac{2at - 0}{at^2 - a} = \frac{2t}{t^2 - 1}$	
	$\therefore \tan \phi = \frac{2t}{t^2 - 1}$	
	$\frac{2}{1-\alpha}$	
	$\tan \phi = \frac{\frac{2}{\tan \theta}}{\frac{1}{\tan^2 \theta} - 1}$	
	$\frac{1}{\tan^2 \theta}^{-1}$	
	$\frac{2 \tan^2 \theta}{2 + 1}$	When $\tan A = \tan B$,
	$-\frac{1}{\tan\theta(1-\tan^2\theta)}$	there are many possible relationships between A
	$=\frac{2\tan\theta}{1-\tan^2\theta}$	and B. A good answer
	$1 - \tan^2 \theta$ $= \tan 2\theta$	should include justifying why $A = B$.
	Since $0 < \phi, \theta < \pi$, $\phi = 2\theta$ (shown)	
(b)	$\angle QPR = \pi - 2\theta$ (corresponding angles)	
	$\angle TPQ = \pi - (\pi - 2\theta) - \theta$ (sum of angles on a straight line)	
	$\therefore \angle TPQ = \theta \text{ (shown)}$	
(c)	The inner reflective surface of the car headlight is to have a <u>parabolic</u>	2 marks – one each to the underlined factors.
	shape with the <u>light source located at point Q</u> (focus) so that light from Q is reflected parallel to the road.	the undermied factors.

(d)	Surface area = $2\pi \int_0^{\sqrt{a}} y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$	Only need to consider the upper half (or lower half) of the curve.
	$=2\pi \int_0^{\sqrt{a}} 2at\sqrt{4a^2t^2+4a^2} dt$	nan) of the curve.
	$=8\pi a^2 \int_0^{\sqrt{a}} t\sqrt{t^2+1} \mathrm{d}t$	
	$=4\pi a^2 \left[\frac{2(t^2+1)^{3/2}}{3} \right]_0^{\sqrt{a}}$	
	$=\frac{8\pi a^2}{3}\Big[(a+1)^{3/2}-1\Big]$	
11(a)	D_1 is always 30 m above ground.	
(b)	When $\mathbf{r}_1 = \mathbf{r}_2$,	
	$\begin{bmatrix} 0 \\ 0 \\ 30 \end{bmatrix} + t \begin{pmatrix} 3 \\ -2 \\ 0 \end{bmatrix} = \begin{pmatrix} 10 \\ 8 \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}$	d
	$3t = 10 - t \cdots (1)$	u
	$3t = 10 - t \cdots (1)$ $-2t = 8 + 2t \cdots (2)$	
	$30 = 3t \cdots (3)$	
	$(1) \Rightarrow t = 2.5, (2) \Rightarrow t = -2 (3) \Rightarrow t = 10$	
	Since there is no consistent value of t , $\mathbf{r}_1 \neq \mathbf{r}_2$ at all times.	
	$\therefore D_1$ and D_2 will not coincide.	
	1 2	
	$\overline{D_1D_2} = \begin{pmatrix} 10\\8\\-30 \end{pmatrix} + t \begin{pmatrix} -4\\4\\3 \end{pmatrix}$	
	$\left \overline{D_1 D_2} \right = \sqrt{(10 - 4t)^2 + (8 + 4t)^2 + (3t - 30)^2}$	
	$=\sqrt{1064-196t+41t^2}$	
	$= \sqrt{41\left(t - \frac{196}{2(41)}\right)^2 + 1064 - 41\left(\frac{98}{41}\right)^2}$	
	$= \sqrt{41\left(t - \frac{98}{41}\right)^2 + \frac{34020}{41}} \ge \sqrt{\frac{34020}{41}}$	
	Minimum distance occurs when $t = \frac{98}{41}$.	
	Alternative:	
	Minimum distance occurs when $\frac{d}{dt}(1064-196t+41t^2)=0$	
	$\Rightarrow 82t = 196$	
	$\Rightarrow t = \frac{98}{41}$	
	$\therefore \operatorname{minimum} \left \overrightarrow{D_1 D_2} \right = \sqrt{\frac{34020}{41}} = 28.8 \text{ m (3sf)}$	

(c)	Angle of elevation = angle between path of D_2 and ground
	$=90^{\circ} - \cos^{-1} \frac{ \begin{vmatrix} 0 \\ 0 \\ 1 \end{vmatrix} \cdot \begin{vmatrix} -1 \\ 2 \\ 3 \end{vmatrix} }{\sqrt{14}}$
	$=90-\cos^{-1}\frac{3}{\sqrt{14}}$
	= 53.3°
(d)	At $t = 7$, $\mathbf{r} = \begin{pmatrix} 21 \\ -14 \end{pmatrix}$ and $\mathbf{r} = \begin{pmatrix} 3 \\ 22 \end{pmatrix}$.

(d) At
$$t = 7$$
, $\mathbf{r}_1 = \begin{pmatrix} 21 \\ -14 \\ 30 \end{pmatrix}$ and $\mathbf{r}_2 = \begin{pmatrix} 3 \\ 22 \\ 21 \end{pmatrix}$.

$$h_1 = 30, h_2 = 21.$$


$$A_1 = 2(30)^2$$
, $A_2 = 2(21)^2$.

Centre of these circular areas are (21, -14) and (3, 22) on the x - y plane

with radii
$$R_1 = \sqrt{\frac{A_1}{\pi}} = 30\sqrt{\frac{2}{\pi}}$$
 $R_2 = 21\sqrt{\frac{2}{\pi}}$ respectively.

Distance between the 2 centres = $\sqrt{(21-3)^2 + (-14-22)^2} \approx 40.249$

 $R_1 + R_2 \approx 40.692$ > distance between the 2 centres, the areas observed by both drones overlapped. (shown)

