FM Prelim Paper 1 (100 marks)

1(a)	Let $f(x) = x^3 - e^{-2x} - 2$	
[2]	$f(1) = (1)^3 - e^{-2(1)} - 2 = -1.1353$ (5 s.f.) < 0	
	$f(2) = (2)^3 - e^{-2(2)} - 2 = 5.9817$ (5 s.f.) > 0	
	[Alternatively, since $0 < e^{-2} < 1$ and $0 < e^{-4} < 1$,	
	$f(1) = (1)^{3} - e^{-2(1)} - 2 = -1 - e^{-2} < 0$	
	$f(2) = (2)^3 - e^{-2(2)} - 2 = 6 - e^{-4} > 0]$	
	Since $f'(x) = 3x^2 + 2e^{-2x} > 0 \forall x \in \mathbb{R}$, f is strictly increasing and	
	continuous. Hence there is exactly one root, α , that lies in [1,2].	
(b)	Let $f(x) = x^3 - e^{-2x} - 2$	
[4]	Using linear interpolation on [1,2], we have	
	$\alpha_1 = \frac{(1)f(2) - (2)f(1)}{f(2) - f(1)} = 1.1595 = 1.2 (1 \text{ d.p.})$	
(c)	$f'(x) = 3x^2 + 2e^{-2x}$	
[2]	By Newton-Raphson method, we have	
	$\alpha_{n+1} = \alpha_n - \frac{f(\alpha_n)}{f'(\alpha_n)} = \alpha_n - \frac{\alpha_n^3 - e^{-2\alpha_n} - 2}{3\alpha_n^2 + 2e^{-2\alpha_n}}$	
	Take the initial approximation to be $\alpha_1 = 1.2$,	
	$\alpha_2 = 1.28058$, $\alpha_3 = 1.27609$, $\alpha_4 = 1.27607$	
	Checking	
	f(1.2755) = -0.00289 < 0	
	f(1.2765) = 0.00215 > 0	
	That is, $\alpha = 1.276$ (3 d.p.).	

2(a) Sequence converges
$$\Rightarrow$$
 as $n \rightarrow \infty$, $u_n \rightarrow l$ and $u_{n+1} \rightarrow l$
[2] $l = \frac{8l - 21}{l - 2}$
 $\Rightarrow l$ satisfies the equation $\frac{8x - 21}{x - 2} = x$,

	$\frac{8x-21}{x} = x$	
	x-2	
	x(x-2) = 8x - 21	
	$x^2 - 10x + 21 = 0$	
	x = 3 or $x = 7$	
	Hence the sequence converges to either 3 or 7. (proven)	
(b) [4]	$u_{n+1} - 7 = \frac{8u_n - 21}{u_n - 2} - 7$	
	$=\frac{8u_n - 21 - 7(u_n - 2)}{u_n - 2}$	
	$=\frac{u_n-7}{u_n-2}<0 (\because u_n-7<0, u_n-2>0)$	
	$\Rightarrow u_{n+1} < 7$	
	Next, consider $u_{n+1} - u_n$,	
	$u_{n+1} - u_n = \frac{8u_n - 21}{u_n - 2} - u_n$	
	$=\frac{8u_{n}-21-u_{n}(u_{n}-2)}{u_{n}-2}$	
	$=-\frac{u_n^2-10u_n+21}{u_n-2}$	
	$= -\frac{(u_n - 3)(u_n - 7)}{2}$	
	$u_n - 2$	
	Since $u_n > 2$, $u_n - 2 > 0$.	
	Since $3 < u_n < 7$, $(u_n - 3)(u_n - 7) < 0$. Hence	
	$u_{n+1} - u_n = -\frac{(u_n - 3)(u_n - 7)}{u_n - 2} > 0$	
	$\Rightarrow u_{n+1} - u_n > 0 \text{for} 3 < u_n < 7$	
	Thus $u_{n+1} > u_n$ if $3 < u_n < 7$.	
	Thus, $u_n < u_{n+1} < 7$ if $3 < u_n < 7$.	

3(a)
[3] The characteristic equation for
$$2ax_{n+2} - 2\sqrt{a} x_{n+1} + x_n = 0$$
 is
 $2a\lambda^2 - 2\sqrt{a} \lambda + 1 = 0$, and so for $a > 0$,
 $\lambda = \frac{2\sqrt{a} \pm \sqrt{4a - 4(2a)(1)}}{2(2a)} = \frac{\sqrt{a} \pm \sqrt{a - 2a}}{2a}$ (2 distinct roots)
 $= \frac{\sqrt{a} \pm \sqrt{-a}}{2a} = \frac{\sqrt{a} \pm i\sqrt{a}}{2a} = \frac{1}{2\sqrt{a}}(1 \pm i) = \frac{\sqrt{2}}{2\sqrt{a}}e^{\pm i\frac{\pi}{4}}$
Hence the general solution is $x_n = A\left(\frac{1+i}{2\sqrt{a}}\right)^n + B\left(\frac{1-i}{2\sqrt{a}}\right)^n$.

or
$$x_n = \left(\frac{\sqrt{2}}{2\sqrt{a}}\right)^n \left((A+B)\cos\left(\frac{n\pi}{4}\right) + (A-B)i\sin\left(\frac{n\pi}{4}\right)\right)$$
 (note that
A and B are complex numbers)
or $x_n = \left(\frac{\sqrt{2}}{2\sqrt{a}}\right)^n \left(C\cos\left(\frac{n\pi}{4}\right) + D\sin\left(\frac{n\pi}{4}\right)\right), C, D \in \mathbb{R}$
(b) When $a = 3$, the general solution is
 $x_n = \left(\frac{\sqrt{2}}{2\sqrt{3}}\right)^n \left(C\cos\left(\frac{n\pi}{4}\right) + D\sin\left(\frac{n\pi}{4}\right)\right), C, D \in \mathbb{R}$
 $x_0 = 3 \Rightarrow C = 3$
 $x_1 = \frac{1}{\sqrt{3}} \Rightarrow \frac{\sqrt{2}}{2\sqrt{3}} \left(\frac{3}{\sqrt{2}} + D\frac{1}{\sqrt{2}}\right) = \frac{1}{\sqrt{3}} \Rightarrow 3 + D = 2 \Rightarrow D = -1$
Hence $x_n = \left(\frac{1}{\sqrt{6}}\right)^n \left(3\cos\left(\frac{n\pi}{4}\right) - \sin\left(\frac{n\pi}{4}\right)\right),$ and so
 $C = 3, D = -1, f(n) = \left(\frac{1}{\sqrt{6}}\right)^n, g(n) = \frac{n\pi}{4}.$
Alternatively
When $a = 3$, the general solution is $x_n = A\left(\frac{1+i}{2\sqrt{3}}\right)^n + B\left(\frac{1-i}{2\sqrt{3}}\right)^n$
 $x_0 = 3 \Rightarrow A + B = 3$
 $x_1 = \frac{A}{2\sqrt{3}}(1+i) + \frac{B}{2\sqrt{3}}(1-i) = \frac{1}{2\sqrt{3}}(A+B+(A-B)i)$
 $\therefore \frac{1}{2\sqrt{3}}(3+(A-B)i) = \frac{1}{\sqrt{3}} \Rightarrow 3+(A-B)i = 2 \Rightarrow A - B = -\frac{1}{i} = i$
 $\therefore A = \frac{1}{2}(3+i), B = \frac{1}{2}(3-i)$

$$\begin{aligned} x_n &= \frac{3+i}{2} \left(\frac{1+i}{2\sqrt{3}} \right)^n + \frac{3-i}{2} \left(\frac{1-i}{2\sqrt{3}} \right)^n \\ &= \frac{3+i}{2} \left(\frac{\sqrt{2}e^{i\frac{\pi}{4}}}{2\sqrt{3}} \right)^n + \frac{3-i}{2} \left(\frac{\sqrt{2}e^{-i\frac{\pi}{4}}}{2\sqrt{3}} \right)^n \\ &= \frac{3+i}{2} \left(\cos\left(\frac{n\pi}{4}\right) + i\sin\left(\frac{n\pi}{4}\right) \right) \\ &+ \frac{3-i}{2(\sqrt{6})^n} \left(\cos\left(\frac{n\pi}{4}\right) - i\sin\left(\frac{n\pi}{4}\right) \right) \\ &= \frac{1}{2(\sqrt{6})^n} \left(6\cos\left(\frac{n\pi}{4}\right) - 2\sin\left(\frac{n\pi}{4}\right) \right) \\ &= \frac{1}{2(\sqrt{6})^n} \left(3\cos\left(\frac{n\pi}{4}\right) - \sin\left(\frac{n\pi}{4}\right) \right) \end{aligned}$$
(e) For $a > 0$,
[2] The general solution is $x_n = \left(\frac{\sqrt{2}}{2\sqrt{a}} \right)^n \left(C\cos\left(\frac{n\pi}{4}\right) + D\sin\left(\frac{n\pi}{4}\right) \right), \ C, D \in \mathbb{R}$
Note that the trigonometric terms are periodic and bounded. Hence for $x_n \to 0$, we only require $0 < \frac{\sqrt{2}}{2\sqrt{a}} < 1 \Rightarrow \sqrt{a} > \frac{1}{\sqrt{2}} \Rightarrow a > \frac{1}{2} \Rightarrow \left(\frac{1}{2}, \infty \right)$ is the required range.

4(a) [3] Since $|\lambda_1| > |\lambda_2| > |\lambda_3| > |\lambda_4| > 0$, the eigenvalues are distinct and so $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4\}$ is linearly independent. $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4\}$ linearly independent $\rightarrow \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4\}$ is a basis of \mathbb{R}^4 . Hence for any $\mathbf{x} \in \mathbb{R}^4$, it can be expressed as a linear combination of $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4$ $\mathbf{x} = c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + c_3\mathbf{x}_3 + c_4\mathbf{x}_4 \Rightarrow \mathbf{A}\mathbf{x} = \mathbf{A}c_1\mathbf{x}_1 + \mathbf{A}c_2\mathbf{x}_2 + \mathbf{A}c_3\mathbf{x}_3 + \mathbf{A}c_4\mathbf{x}_4$ $= c_1\mathbf{A}\mathbf{x}_1 + c_2\mathbf{A}\mathbf{x}_2 + c_3\mathbf{A}\mathbf{x}_3 + c_4\mathbf{A}\mathbf{x}_4$ $= c_1\lambda_1\mathbf{x}_1 + c_2\lambda_2\mathbf{x}_2 + c_3\lambda_3\mathbf{x}_3 + c_4\lambda_4\mathbf{x}_4$ By pre-multiplying by **A** repeatedly, we have

	$\mathbf{A}^{2}\mathbf{x} = \mathbf{A}c_{1}\lambda_{1}\mathbf{x}_{1} + \mathbf{A}c_{2}\lambda_{2}\mathbf{x}_{2} + \mathbf{A}c_{3}\lambda_{3}\mathbf{x}_{3}$	$\lambda_3 \mathbf{x}_3 + \mathbf{A} c_4 \lambda_4 \mathbf{x}_4$	
	$= c_1 \lambda_1 \mathbf{A} \mathbf{x}_1 + c_2 \lambda_2 \mathbf{A} \mathbf{x}_2 + c_3 \lambda_3$	$\mathbf{A}\mathbf{x}_3 + c_4 \lambda_4 \mathbf{A}\mathbf{x}_4$	
	$=c_1\lambda_1^2\mathbf{x}_1+c_2\lambda_2^2\mathbf{x}_2+c_3\lambda_3^2\mathbf{x}_3$	$+c_4\lambda_4^2\mathbf{x}_4$	
	$\mathbf{A}^{3}\mathbf{x} = c_{1}\lambda_{1}^{3}\mathbf{x}_{1} + c_{2}\lambda_{2}^{3}\mathbf{x}_{2} + c_{3}\lambda_{3}^{3}\mathbf{x}_{3} - c_{3$	$+c_4\lambda_4^3\mathbf{x}_4$	
	$\mathbf{A}^{k}\mathbf{x} = c_{1}\lambda_{1}^{k}\mathbf{x}_{1} + c_{2}\lambda_{2}^{k}\mathbf{x}_{2} + c_{3}\lambda_{3}^{k}\mathbf{x}_{3}$	$+c_4\lambda_4^k\mathbf{x}_4$	
	By factorizing out λ_1^k , we have		
	$\mathbf{A}^{k}\mathbf{x} = \lambda_{1}^{k} \left(c_{1}\mathbf{x}_{1} + c_{2} \left(\frac{\lambda_{2}}{\lambda_{1}} \right)^{k} \mathbf{x}_{2} + c_{3} \left(\frac{\lambda_{2}}{\lambda_{1}} \right)^{k} \mathbf{x}_{3} + c_{3} \left(\frac{\lambda_{2}}{\lambda_{1$	$\frac{\lambda_3}{\lambda_1}\right)^k \mathbf{x}_3 + c_4 \left(\frac{\lambda_4}{\lambda_1}\right)^k \mathbf{x}_4 \right)$	
(b)	From (a), since $ \lambda_1 > \lambda_2 > \lambda_3 > \lambda_3 $	$_{4} > 0$, we observe that for large k,	
[1]	$\left(\frac{\lambda_i}{\lambda_1}\right)^k \to 0, \ i = 2, 3, 4, \text{ since } \left \frac{\lambda_i}{\lambda_1}\right < 1$	(1, and so	
	$\mathbf{A}^{k}\mathbf{x} = \lambda_{1}^{k} \left(c_{1}\mathbf{x}_{1} + c_{2} \left(\frac{\lambda_{2}}{\lambda_{1}} \right)^{k} \mathbf{x}_{2} + c_{3} \left(\frac{\lambda_{2}}{\lambda_{1}} \right)^{k} \mathbf{x}_{3} + c_{3} \left(\frac{\lambda_{2}}{\lambda_{1$	$\frac{\lambda_3}{\lambda_1}\right)^k \mathbf{x}_3 + c_4 \left(\frac{\lambda_4}{\lambda_1}\right)^k \mathbf{x}_4 \right) \approx \lambda_1^k c_1 \mathbf{x}_1.$	
(c)	Using the GC to solve for $Mx = -x$	x as a SLE, we get the eigenvector	
[1]	associated with eigenvalue -1 as	$ \begin{pmatrix} -1 \\ 1 \\ 0 \\ 1 \end{pmatrix} $	
(d)	$\lambda_1 = 1.80194, \ \lambda_2 = -1.24698, \ \lambda_3 = -1.24698$	$-1, \lambda_4 = 0.44504,$	
[3]	Note that the eigenvalues of \mathbf{M} are	all distinct, so results in (a) and (b)	
	holds.		
	Note that it suffices to find the leas	st integer value of k by considering $x^{k} = \frac{1}{2} e^{-\frac{1}{2}k}$	
	$\left \left(\frac{\lambda_2}{\lambda_1} \right)^{k} \right < 0.0001 \text{ as } \left(\frac{\lambda_2}{\lambda_1} \right)^{k} \right > \left(\frac{\lambda_3}{\lambda_1} \right)^{k}$	$\left {}\right > \left \left(\frac{\lambda_4}{\lambda_1} \right)^{\star} \right . \text{From GC},$	
	k	$\left(\frac{\lambda_2}{\lambda_1}\right)^k < 0.0001$	
	25	0.0001	
	26	0.00007 < 0.0001	
	Thus least $k = 26$		

Since
$$\alpha^{26}c_1\mathbf{x}_1 \approx \mathbf{M}^{26}\mathbf{x} = \begin{pmatrix} 1557649\\ 1942071\\ 1942071\\ 864201 \end{pmatrix}$$
 and $\alpha^{26}c_1$ is a constant, \mathbf{x}_1 can be scaled accordingly, and so an approximate eigenvector \mathbf{x}_1 is $\begin{pmatrix} 0.80\\ 1\\ 1\\ 0.44 \end{pmatrix}$.

5(a)	$\det\left(\mathbf{A}-\lambda\mathbf{I}\right) =$	
[3]	$(a-\lambda)(-a-\lambda) - (b+a)(b-a) = -(a^2 - \lambda^2) - (b^2 - a^2) = \lambda^2 - b^2.$	
	Hence det $(\mathbf{A} - \lambda \mathbf{I}) = 0 \implies \lambda^2 - b^2 = 0 \implies \lambda = \pm b$	
	Eigenvalues of A satisfy the characteristic equation $\lambda^2 - b^2 = 0$ which	
	has roots $\pm b$. Hence b is an eigenvalue of A.	
	[Alternatively,	
	Since the column sums of A are both <i>b</i> , $\mathbf{A}^{\mathrm{T}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = b \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, and hence <i>b</i>	
	is an eigenvalue of \mathbf{A}^{T} with eigenvector $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$. But eigenvalue of \mathbf{A} is	
	same as eigenvector of \mathbf{A}^T . Hence b is an eigenvalue of \mathbf{A} .]	
	To find corresponding eigenvector, solve:	
	$ \begin{pmatrix} a-b & b+a \\ b-a & -a-b \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} $	
	Since $\begin{pmatrix} a-b & b+a \\ b-a & -a-b \end{pmatrix} \xrightarrow{R_2+R_1} \begin{pmatrix} a-b & b+a \\ 0 & 0 \end{pmatrix}$, $y = \frac{b-a}{b+a}x$, and so an	
	eigenvector corresponding to <i>b</i> is $\begin{pmatrix} 1 \\ \frac{b-a}{b+a} \end{pmatrix}$ or $\begin{pmatrix} b+a \\ b-a \end{pmatrix}$.	
	[Alternatively, $(a-b \ b+a) \begin{pmatrix} x \\ y \end{pmatrix} = 0$, and so an eigenvector	
	corresponding to <i>b</i> is perpendicular to $\begin{pmatrix} a-b\\b+a \end{pmatrix}$ which is $\begin{pmatrix} b+a\\b-a \end{pmatrix}$.]	

(b)
[3]
$$A^{2} = \begin{pmatrix} a & b+a \\ b-a & -a \end{pmatrix} \begin{pmatrix} a & b+a \\ b-a & -a \end{pmatrix} = \begin{pmatrix} a^{2}+b^{2}-a^{2} & 0 \\ 0 & b^{2}-a^{2}+a^{2} \end{pmatrix} = \begin{pmatrix} b^{2} & 0 \\ 0 & b^{2} \end{pmatrix}$$

$$\therefore A^{3} = b^{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = b^{2} \mathbf{I}_{2}$$

$$A^{2} = b^{2} \mathbf{I}_{2}$$

$$A^{2} = b^{2} \mathbf{I}_{2}$$

$$A^{-1} = \begin{pmatrix} a & b+a \\ b-a & -a \end{pmatrix}^{-1} = \frac{1}{b^{2}} \begin{pmatrix} a & b+a \\ b-a & -a \end{pmatrix}$$
OR directly
$$A^{-1} = \frac{1}{\det \mathbf{A}} \begin{pmatrix} -a & -(b+a) \\ (-b-a) & a \end{pmatrix}$$

$$= \frac{1}{-a^{2}-(b^{2}-a^{2})} \begin{pmatrix} -a & -(b+a) \\ (-b-a) & a \end{pmatrix}$$

$$= \frac{1}{-a^{2}-(b^{2}-a^{2})} \begin{pmatrix} -a & -(b+a) \\ (-b-a) & a \end{pmatrix}$$

$$= \frac{1}{b^{2}} \begin{pmatrix} a & b+a \\ b-a & -a \end{pmatrix}$$
(c)
$$A = \begin{pmatrix} a & b+a \\ b-a & -a \end{pmatrix}$$

$$\Rightarrow A^{2} = \begin{pmatrix} b^{2} & 0 \\ 0 & b^{2} \end{pmatrix} = b^{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = b^{2} \mathbf{I}_{2}$$

$$\Rightarrow A^{3} = b^{2} \begin{pmatrix} a & b+a \\ b-a & -a \end{pmatrix}$$
(c)
$$A = \begin{pmatrix} a & b+a \\ b-a & -a \end{pmatrix}$$

$$\Rightarrow A^{3} = b^{2} \begin{pmatrix} a & b+a \\ b-a & -a \end{pmatrix}$$
Hence $A^{n} = \begin{cases} b^{n-1} A & \text{if } n \text{ is odd} \\ b^{n} \mathbf{I}_{2} & \text{if } n \text{ is even} \end{cases}$
Let P_{n} , where $n \ge 0$, be the statement
$$A^{n} = \begin{cases} b^{n-1} A & \text{if } n \text{ is odd} \\ b^{n} \mathbf{I}_{2} & \text{if } n \text{ is odd} \\ b^{n} \mathbf{I}_{3} & \text{if } n \text{ is odd} \\ b^{n} \mathbf{I}_{3} & \text{if } n \text{ is odd} \\ b^{n} \mathbf{I}_{3} & \text{if } n \text{ is odd} \\ b^{n} \mathbf{I}_{3} & \text{if } n \text{ is odd} \\ b^{n} \mathbf{I}_{3} & \text{if } n \text{ is o$$

Assume that P_k is true for so	ome $k \in \mathbb{Z}^+$, that is	
$\mathbf{A}^{k} = \int b^{k-1} \mathbf{A}$	if k is odd	
$\mathbf{A} = b^k \mathbf{I}_2$	if k is even	
Then		
$\int b^{k-1} \mathbf{A} \mathbf{A} = b^{k-1}$	$b^2 \mathbf{I}_2 = b^{k+1} \mathbf{I}_2$	
$\begin{bmatrix} \mathbf{A}^{k+1} \end{bmatrix}$ if k is	s odd, that is $k+1$ is even	
$b^k \mathbf{A} = b^{[(k+1)-1]}$	¹ A	
if k is	s even, that is $k + 1$ is odd	
Hence, P_k is true $\Rightarrow P_{k+1}$ is	s true.	
Since P_1 and P_2 is true, by	Mathematical Induction, P_n is true for all	
$n \in \mathbb{Z}^+$.		

6(a)	$\frac{1}{2} = A\cos\theta + B\cos(\theta - \alpha)$	
[2]	r	
	$1 = Ar\cos\theta + Br(\cos\theta\cos\alpha + \sin\theta\sin\alpha)$	
	$1 = Ax + B(x\cos\alpha + y\sin\alpha)$	
	$(A+B\cos\alpha)x+B\sin\alpha y=1$	
	$mx + ny = 1$, where $m = A + B \cos \alpha$ and $n = B \sin \alpha$	
(b) (i)	Let the equation of the chord PQ be $\frac{1}{r} = A\cos\theta + B\cos(\theta - \alpha)$	
[4]	At P,	
	$r_{p} = \frac{a}{1 + e\cos(\alpha - \beta)}$	
	$\frac{1}{r_{P}} = \frac{1}{a} \left(1 + e \cos(\alpha - \beta) \right) = A \cos(\alpha - \beta) + B \cos(-\beta)$	
	So, $\frac{1}{a} (1 + e \cos(\alpha - \beta)) = A \cos(\alpha - \beta) + B \cos \beta (1)$	
	At <i>Q</i> ,	
	$r_{Q} = \frac{a}{1 + e\cos(\alpha + \beta)}$	
	$\frac{1}{r_{Q}} = \frac{1}{a} \left(1 + e \cos(\alpha + \beta) \right) = A \cos(\alpha + \beta) + B \cos(\beta)$	
	So, $\frac{1}{a}(1+e\cos(\alpha+\beta)) = A\cos(\alpha+\beta) + B\cos\beta$ (2)	
	$(2) - (1): \frac{e}{a} \left(\cos\left(\alpha + \beta\right) - \cos\left(\alpha - \beta\right) \right) = A \left(\cos\left(\alpha + \beta\right) - \cos\left(\alpha - \beta\right) \right)$	

	Comparing coefficients, $A = \frac{e}{a}$. Subst $A = \frac{e}{a}$ into (1), we get	
	$\frac{1}{a}(1+e\cos(\alpha-\beta)) = \frac{e}{a}\cos(\alpha-\beta) + B\cos\beta$	
	$\frac{1}{a} = B\cos\beta$	
	$B = \frac{1}{a\cos\beta} \qquad 0 < \beta < \frac{\pi}{2} \Longrightarrow \cos\beta \neq 0$	
	Thus, $\frac{1}{r} = \frac{e}{a}\cos\theta + \frac{1}{a\cos\beta}\cos(\theta - \alpha)$	
	The equation of the chord PQ is $\frac{1}{r} = \frac{e}{a}\cos\theta + \frac{\sec\beta}{a}\cos(\theta - \alpha)$	
(ii)	For the tangent at $\theta = \alpha$, let $\beta \rightarrow 0$. Then, sec $\beta \rightarrow 1$.	
[1]	The equation of the tangent is $\frac{1}{r} = \frac{e}{a}\cos\theta + \frac{1}{a}\cos(\theta - \alpha)$.	

$$\begin{aligned} 7(\mathbf{a}) \\ [\mathbf{2+3}] \\ 1 \\ z &= w + \frac{1}{w} = k\left(\cos\theta + i\sin\theta\right) + \frac{1}{k}\left(\cos\theta - i\sin\theta\right) \\ &= \left(k\cos\theta + \frac{1}{k}\cos\theta\right) + i\left(k\sin\theta - \frac{1}{k}\sin\theta\right) \\ \text{Re}(z) &= x = \left(\frac{k^2 + 1}{k}\right)\cos\theta \Rightarrow \frac{k^2x^2}{\left(k^2 + 1\right)^2} = \cos^2\theta \quad ----(1) \\ \text{Im}(z) &= y = \left(\frac{k^2 - 1}{k}\right)\sin\theta \Rightarrow \frac{k^2y^2}{\left(k^2 - 1\right)^2} = \sin^2\theta \quad ----(2) \\ (1) + (2) &\Rightarrow \frac{k^2x^2}{\left(k^2 + 1\right)^2} + \frac{k^2y^2}{\left(k^2 - 1\right)^2} = 1 \\ &\Rightarrow \frac{x^2}{\left(k^2 + 1\right)^2} + \frac{y^2}{\left(k^2 - 1\right)^2} = \frac{1}{k^2} \\ &\Rightarrow \frac{x^2}{\left(\frac{k^2 + 1}{k}\right)^2} + \frac{y^2}{\left(\frac{k^2 - 1}{k}\right)^2} = 1 \\ &\text{Therefore } z \text{ lies on an ellipse. Eccentricity} = \frac{2k}{k^2 + 1}. \\ &\text{[Note that the coordinates of the foci are } (-2, 0) and (2, 0).] \end{aligned}$$

8(a) Method 1 $\begin{pmatrix} a & -1 & -1 \\ 1 & b & 3 \\ 0 & 1 & c \end{pmatrix} \xrightarrow{R_2 \leftrightarrow R_1} \begin{pmatrix} 1 & b & 3 \\ a & -1 & -1 \\ 0 & 1 & c \end{pmatrix}$ [4] $\xrightarrow{R_2 - aR_1} \begin{pmatrix} 1 & b & 3 \\ 0 & -1 - ab & -1 - 3a \\ 0 & 1 & c \end{pmatrix}$ $\xrightarrow{R_2 \leftrightarrow R_3} \begin{pmatrix} 1 & b & 3 \\ 0 & 1 & c \\ 0 & -1 - ab & -1 - 3a \end{pmatrix}$ $\xrightarrow{R_3 + (1+ab)R_2} \begin{pmatrix} 1 & b & 3 \\ 0 & 1 & c \\ 0 & 0 & 1 & 3a + (1+ab)a \end{pmatrix}$ Since det($\mathbf{A}^{\mathrm{T}}\mathbf{A}$) = det(\mathbf{A}^{T}) det(\mathbf{A}) = $[\det(\mathbf{A})]^2 = 0 \rightarrow \det(\mathbf{A}) = 0$, and so rank (A) is not 3. From the REF, there are 2 leading 1's and so rank(A) = 2. By the rank-nullity theorem, nullity (A) = 1, and so dim(nullspace) = 1.In addition, $-1-3a + (1+ab)c = 0 \Longrightarrow c = \frac{1+3a}{1+ab}$. Method 2 For $a \neq 0$: $\begin{pmatrix} a & -1 & -1 \\ 1 & b & 3 \\ 0 & 1 & c \end{pmatrix} \xrightarrow{R_2 - \frac{1}{a}R_1} \begin{pmatrix} a & -1 & -1 \\ 0 & b + \frac{1}{a} & 3 + \frac{1}{a} \\ c & c & c \end{pmatrix}$ $\xrightarrow{R_2 - (b + \frac{1}{a})R_3} \left(\begin{array}{ccc} a & -1 & -1 \\ 0 & 0 & 3 + \frac{1}{a} - c(b + \frac{1}{a}) \\ 0 & 1 & 2 \end{array} \right)$ $\xrightarrow[R_2 \leftrightarrow R_3]{\frac{1}{a}R_1} \begin{pmatrix} 1 & \frac{-1}{a} & \frac{-1}{a} \\ 0 & 1 & c \\ 0 & 0 & 3 + \frac{1}{a} - c(b + \frac{1}{a}) \end{pmatrix}$ Since det($\mathbf{A}^{\mathrm{T}}\mathbf{A}$) = det(\mathbf{A}^{T}) det(\mathbf{A}) = $[\det(\mathbf{A})]^2 = 0 \rightarrow \det(\mathbf{A}) = 0$, and so rank (A) is not 3. From the REF, there are 2 leading 1's and so rank $(\mathbf{A}) = 2$. By the ranknullity theorem, nullity $(\mathbf{A}) = 1$, and so dim(nullspace) = 1.

	Hence $3 + \frac{1}{a} - c(b + \frac{1}{a}) = 0 \Rightarrow c = \frac{\frac{1}{a}(3a+1)}{\frac{1}{a}(ab+1)} = \frac{1+3a}{1+ab}.$	
	For $a = 0$, $\mathbf{A} = \begin{pmatrix} 0 & -1 & -1 \\ 1 & b & 3 \\ 0 & 1 & c \end{pmatrix}$ and since $\det(\mathbf{A}) = -[-c - (-1)] = 0$,	
	$c = 1$, which satisfies the equation also $\left(\because \frac{1+3(0)}{1+b(0)} = 1 \right)$.	
	Alternative method to show <i>c</i> : det (\mathbf{A}) = 0	
	$\Rightarrow abc - 1 - (-c + 3a) = 0 \Rightarrow c(ab + 1) = 1 + 3a \Rightarrow c = \frac{1 + 3a}{1 + ab}$	
(b) [1]	Consider $\mathbf{A} = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 0 & 3 \\ 0 & 1 & 4 \end{pmatrix}$.	
	Since rank $(\mathbf{A}) = 2$ and none of the columns are multiples of each other, any 2 of the columns is a basis of the column space of \mathbf{A} .	
	Geometrically, Column Space (A) is a plane passing through the origin and parallel to $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$. (or any other pair of columns in	
	A)	
	Alternatively : Plane containing origin and perpendicular to $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$	
	Note : equation of the plane is $x - y + z = 0$	
(c)	Method 1 : consider subspace	
[1]	Since the column space of \mathbf{A} is a plane through the origin, it is a subspace. Hence $\mathbf{A}\mathbf{y}$ is an element in this subspace.	
	subspace. Hence $A\mathbf{x}$ is an element in this subspace.	
	For $\mathbf{A}\mathbf{x} = \begin{bmatrix} 1\\0\\1 \end{bmatrix}$ to have no solution, $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$ is NOT an element in the	
	subspace. Hence, as subspaces are closed under scalar multiplication,	

	any multiple of $\begin{pmatrix} 1\\0\\1 \end{pmatrix}$ is also NOT an element of the subspace. So $\begin{pmatrix} 2\\0\\2 \end{pmatrix}$	
	is not in the column space of A .	
	Method 2 : proof by contradiction (2)	
	If $\begin{pmatrix} 2\\0\\2 \end{pmatrix}$ belong to the column space of A , then there exits u such that	
	$\mathbf{A}\mathbf{u} = \begin{pmatrix} 2\\0\\2 \end{pmatrix}. \text{ Then } \mathbf{x} = \frac{1}{2}\mathbf{u} \text{ is a solution for } \mathbf{A}\mathbf{x} = \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \text{ a contradiction.}$	
	Method 3 : by considering the geometrical relation between vector and plane	
	For $\mathbf{A}\mathbf{x} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ to have no solution, $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ is not in the column space of	
	A, and so it is not on the plane (from (b)). Since the plane (from (b)) contains the origin, $k \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is also not on the plane for all k (as it is a	
	vector in the same direction), and so it is not in the column space of A also.	
(d) [3]	$\mathbf{A} = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 0 & 3 \\ 0 & 1 & 4 \end{pmatrix}$	
	Least squares solutions to $\mathbf{A}\mathbf{x} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ is v such that v is a solution to	
	$\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathrm{T}} \begin{pmatrix} 1\\0\\1 \end{pmatrix}.$	
	$\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{v} = \mathbf{A}^{\mathrm{T}} \begin{pmatrix} 1\\0\\1 \end{pmatrix} \Rightarrow \begin{pmatrix} 2 & -1 & 2\\-1 & 2 & 5\\2 & 5 & 26 \end{pmatrix} \mathbf{v} = \begin{pmatrix} 1\\0\\3 \end{pmatrix}$	

	$y = 0, y = -\frac{\sqrt{3}}{3}x, y = -\sqrt{3}x, x = 0$	
(b)	$x = r\cos\alpha = 5\cos\theta + \cos 5\theta,$	
(i)	$y = r\sin\alpha = 5\sin\theta - \sin 5\theta.$	
[I]	Hence it is clear that $\theta \neq \alpha$, and so the integral doesn't give the area.	
	Alternatively,	
	Area of $A = \int_{\alpha_1}^{\alpha_2} \frac{1}{2} r^2 d\alpha$ where α_1 , α_2 correspond to the polar angle	
	that S and T makes with the polar axis. However, in the integral	
	$e^{\tan^{-1}\frac{3}{2}}$ 1 (
	$\int_{0}^{2} \frac{1}{2} \left((5\cos\theta + \cos 5\theta)^{2} + (5\sin\theta - \sin 5\theta)^{2} \right) d\theta, \theta \text{is the}$	
	parameter, and not the polar angle α . In particular,	
	• $\theta = \tan^{-1} \frac{3}{2}$ does not correspond to <i>T</i> , and	
	• $r^2 \neq (5\cos\theta + \cos 5\theta)^2 + (5\sin\theta - \sin 5\theta)^2$	
	Hence the area cannot be determined by the integral.	
b(ii) [3]	$\alpha_1 = 0 \Longrightarrow \frac{y}{x} = 0 \Longrightarrow y = 0 \Longrightarrow \theta = 0$	
	$\alpha_2 = \tan^{-1}\frac{3}{2} \Longrightarrow \frac{y}{r} = \frac{3}{2}$	
	$5\sin\theta - \sin 5\theta = 3$	
	$\Rightarrow \frac{1}{5\cos\theta + \cos 5\theta} = \frac{1}{2}$	
	$\Rightarrow \theta = 0.7853982$ (from GC note that actual value is $\frac{\pi}{4}$)	
	4	
	$x = 5\cos\theta + \cos 5\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = -5(\sin\theta + \sin 5\theta)$	
	$y = 5\sin\theta - \sin 5\theta \Rightarrow \frac{dy}{d\theta} = 5(\cos\theta - \cos 5\theta)$	
	Area of A	
	$-\frac{1}{1} \int_{0.7853982} \left[(5\cos\theta + \cos 5\theta) (5(\cos\theta - \cos 5\theta)) \right]_{10}$	
	$= \frac{1}{2} \mathbf{J}_0 \qquad \left[-(5\sin\theta - \sin 5\theta) \left(-5(\sin\theta + \sin 5\theta) \right) \right]^{\mathbf{d}\theta}$	
	= 9.520648667 (Using GC to integrate)	
	$=9.52 \text{ units}^2$ (3 s.f.)	
(c) [5]	$x = k \left(5 \cos \theta + \cos 5\theta \right) \Longrightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = -5k \left(\sin \theta + \sin 5\theta \right)$	
	$y = k (5\sin\theta - \sin 5\theta) \Longrightarrow \frac{dy}{d\theta} = 5k (\cos\theta - \cos 5\theta)$	

$$\begin{split} & \sqrt{\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2} \\ &= \sqrt{\left(-5k\left(\sin\theta + \sin 5\theta\right)\right)^2 + \left(5k\left(\cos\theta - \cos 5\theta\right)\right)^2} \\ &= 5k\sqrt{\left(\sin\theta + \sin 5\right)^2 + \left(\cos\theta - \cos 5\theta\right)^2} \\ &= 5k\sqrt{\sin^2\theta + \sin^2 5\theta + 2\sin\theta \sin 5\theta + \cos^2\theta + \cos^2 5\theta - 2\cos\theta \cos 5\theta} \\ &= 5k\sqrt{2\sin\theta \sin 5\theta - 2\cos\theta \cos 5\theta + 2} \\ &= 5k\sqrt{2-2\cos 6\theta} \\ &= 5k\sqrt{2-2\cos 6\theta} \\ &= 5k\sqrt{4}\sin^2 3\theta \\ &= 10k |\sin 3\theta| \\ \\ & \text{Required Surface area} \\ &= 2\times \int_0^{\frac{\pi}{2}} 2\pi x \sqrt{\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2} d\theta \\ &= 2\times \int_0^{\frac{\pi}{2}} 2\pi x \sqrt{\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2} d\theta \\ &= 2\times \int_0^{\frac{\pi}{2}} (5\cos\theta + \cos 5\theta) |\sin 3\theta| d\theta \\ &= 40\pi k^2 \int_0^{\frac{\pi}{2}} (5\cos\theta + \cos 5\theta) [\sin 3\theta] d\theta \\ &= 40\pi k^2 \int_0^{\frac{\pi}{2}} (5\cos\theta + \cos 5\theta) [\sin 3\theta] d\theta \\ &= 20\pi k^2 \int_0^{\frac{\pi}{2}} 5\sin 4\theta + 5\sin 2\theta + \sin 8\theta - \sin 2\theta d\theta \\ &= 20\pi k^2 \int_0^{\frac{\pi}{2}} 5\sin 4\theta + 4\sin 2\theta + \sin 8\theta d\theta \\ &= 20\pi k^2 \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} 5\sin 4\theta + 4\sin 2\theta + \sin 8\theta d\theta \\ &= 20\pi k^2 \left[-\frac{5}{4}\cos 4\theta - 2\cos 2\theta - \frac{1}{8}\cos 8\theta \right]_0^{\frac{\pi}{2}} \\ &= 20\pi k^2 \left[-\frac{5}{4}\cos 4\theta - 2\cos 2\theta - \frac{1}{8}\cos 8\theta \right]_0^{\frac{\pi}{2}} \\ &= 20\pi k^2 \left[-\frac{5}{4}(1-2) - 2\left(-\frac{1}{2}\right) - \frac{1}{8}\left(-\frac{1}{2}\right) + 2\left(-\frac{1}{2}\right) + \frac{1}{8}\left(-\frac{1}{2}\right) \right] \end{split}$$

$=20\pi k^2 \left[\frac{49}{8}\right]$	
$=\frac{245}{2}\pi k^2$	
$\therefore d = 245$	

	Polar equation of the orbit is	
	$a(1-e^2)$ 35500 $(1-0.70141^2)$ 18035	
	$r = \frac{1}{1 - e\sin\theta} = \frac{1}{1 - 0.70141\sin\theta} \approx \frac{1}{1 - 0.70141\sin\theta}$	
	Area swept out from perigee to equatorial plane	
	$\frac{1}{2} \int_{-\infty}^{0} \left(\frac{18035}{2} \right)^2 d\theta = 131814951$	
	$2 \int_{-\frac{\pi}{2}}^{-\frac{\pi}{2}} (1 - 0.70141 \sin \theta)$	
	Area swept out from equatorial plane to apogee	
	$\frac{1}{2} \int_0^{\frac{\pi}{2}} \left(\frac{18035}{1 - 0.70141 \sin \theta} \right)^2 d\theta = 1279181140$	
	Thus, the time taken for the satellite to travel from the equatorial	
	plane to apogee is $\frac{1279181140}{2} \times 0.5 = 4.85$ hrs	
	131814951 ×0.5 – 4.65 ms	
(c) [4]	Let the line $\theta = \alpha$ be the axis of the parabola, where $0 < \alpha < \frac{\pi}{2}$.	
	Using the line $\theta = \alpha$ as the "new" initial line of the polar coordinate	
	system, let $\phi = \theta - \alpha$.	
	Then the equation of the parabola is	
	$r = \frac{a}{1 - \cos\phi} = \frac{a}{1 - \cos(\theta - \alpha)}.$	
	From the given observations:	
	$50 = \frac{1 - \cos\left(\frac{\pi}{2} - \alpha\right)}{1 - \cos\left(\frac{\pi}{2} - \alpha\right)}$	
	$a = \frac{1}{2} \frac{\alpha}{\alpha} \frac{\alpha}{\alpha}$	
	$80 = \frac{a}{\sqrt{2}}$	
	$1 - \cos\left(\frac{\pi}{4} - \alpha\right)$	
	$1 - \cos\left(\frac{\pi}{2} - \alpha\right)$	
	Eliminating a, we get $\frac{50}{10} = \frac{10}{10}$	
	$80 1 - \cos\left(\frac{\pi}{2} - \alpha\right)$	
	(3)	
	Using GC, we obtain $\alpha = 0.90097, 0.1779$.	
	Since $0 < \alpha < \frac{\pi}{2}$, then $\alpha = 0.90097$	
	$a = 50 \left(1 - \cos\left(\frac{\pi}{3} - 0.90097\right) \right) = 0.5336$	
	Thus, the shortest distance between the comet and the sun is	
	$\frac{1}{2}a = 0.267 \mathrm{AU}$.	