
Web Application

Learning Outcome

4.2.1 Describe the differences between web applications and native applications.

4.2.2 State and apply usability principles in the design of web applications.

A web application is an application stored at a remote server that requires a web browser as a
client to run and internet for data/resource transfer.

Whereas, a native/desktop application is an application designed to serve standalone
machines that don’t require the internet for its operation. Example of desktop applications are
Microsoft Words, Microsoft Excel, Notepad.

Web Applications Native Applications/Desktop Application
 

Deployment and maintenance (updates) for a
web-based application require deployment on
a single set of server machines.

Deployment and any maintenance/patch are
done on individual client machines
separately.

Web applications can be accessed from
anywhere (most locations), so there is no
location constraint.

As desktop are confined to a standalone
machine, so they can be only accessed from
the machines they are deployed in.

Web applications are platform-independent,
they can work in different types of platforms
with the only requirement of a web browser.

Desktop applications need to be developed
separately for different platform machines.
(Windows, Linux, Unix, Mac etc)

Web applications are at higher security risks
as they are inherently designed to increase
accessibility.

Desktop applications, on the other hand,
have better authorization and administrators
have better control, hence more secure.

Web applications rely heavily on internet
connectivity, for their operation.

Desktop applications don’t require the
internet for their operations. Some
applications just require internet connectivity
at the time of updates.

Web Application Usability Principles



Web applications are designed to provide access to information and services for a variety of
users from different backgrounds. Usability is one important factor for the quality of a web
application. It is defined by 5 quality components:

● Learnability: when the users first encounter the web application, how easy is it to learn to
navigate in the system to perform basic tasks?

● Efficiency: how fast can the users perform tasks after knowing the system?
● Memorability: if the users have not used the system for a long time, how easy is it to

recall the functionality of the system without relearning?
● Errors: possible errors that users make, and how the system help users to recover from

errors?
● Satisfaction: how pleasant is it for use?

Web applications are products without manuals and we don’t expect people to be patient to
figure out how the application works. It has become a very popular marketing platform for
business and companies put usability on top priority to attract customers. Online retail
website also needs to be explicit and easy to use for more efficient transactions.

Human-computer interaction experts has developed plenty of principles, Nielsen’s 10
principles, Norman’s rules, Tognazzini’s 16 principles and Shneiderman’s 8 golden rules.
They covers all the important rules but differs in the way how rules are organized. Here we
will discuss Nielsen’s 10 principles developed by Jacob Nielsen and Rolf Molich in 1990.

(Resource: https://www.nngroup.com/articles/ten-usability-heuristics/)

1. Visibility of System Status

The system should always keep users informed about what is going on, through appropriate
feedback within reasonable time.

For example, when we upload a file into Google Drive, the colour change shows the progress
and the message above shows time left to complete the task.

An online flight search engine uses a loader to show the progress while users are waiting.

https://www.nngroup.com/articles/ten-usability-heuristics/


2. Match between system and the real world

The system should speak the users' language, with words, phrases and concepts familiar to
the user, rather than system-oriented terms. Follow real-world conventions, making
information appear in a natural and logical order.

3. User control and freedom

Users often choose system functions by mistake and will need a clearly marked "emergency
exit" to leave the unwanted state without having to go through an extended dialogue. Support
undo and redo.

For example, an online shop allows the user to adjust the number of items to purchase, and
even to remove the item by clicking the cross sign.

The attachment in Gmail can easily be removed as well.

If the user accidentally clicked the button to delete a post in Google Classroom, the system
popup message allows undo of this action.

If we accidentally deleted an email, it is possible to undo the process to retrieve the mail.



4. Consistency and standards

Users should not have to wonder whether different words, situations, or actions mean the
same thing. Follow platform conventions.

For example, two hotel booking website below both put currency choices and login options
on the top right corner. The form to fill in is on the left side while advertisements or
promotions are on the right side.

5. Error prevention

Even better than good error messages is a careful design which prevents a problem from
occurring in the first place. Either eliminate error-prone conditions or check for them and
present users with a confirmation option before they commit to the action.



For example, Google search offers the correct word for my wrong spelling.

When the user sends an email without the subject or text, the webmail application will pop
out a message for correction.

6. Recognition rather than recall

Minimize the user's memory load by making objects, actions, and options visible. The user
should not have to remember information from one part of the dialogue to another.
Instructions for use of the system should be visible or easily retrievable whenever
appropriate.

For example, a mobile web application shows past search history for users to retrieve.

Another example is a search engine which offers suggested contents to the user.



7. Flexibility and efficiency of use

Accelerators — unseen by the novice user — may often speed up the interaction for the expert
user such that the system can cater to both inexperienced and experienced users. Allow users
to tailor frequent actions.

For example, an experienced user will explore the tools to search for webpages published
within certain period of time.

8. Aesthetic and minimalist design

Dialogues should not contain information which is irrelevant or rarely needed. Every extra
unit of information in a dialogue competes with the relevant units of information and
diminishes their relative visibility.

Examples includes search engines:

University and government websites:



9. Help users recognize, diagnose, and recover from errors

Error messages should be expressed in plain language (no codes), precisely indicate the
problem, and constructively suggest a solution.

When the user enters a wrong login information, the message is shown in red. A few options
are given to the user to resolve the problem: either re-enter the correct account, or sign in via
Facebook or Google, or click the link ‘I forgot’ to trace the password.

10. Help and documentation

Even though it is better if the system can be used without documentation, it may be necessary
to provide help and documentation. Any such information should be easy to search, focused
on the user's task, list concrete steps to be carried out, and not be too large.


