				-
N	А	N	_	-

SOLUTIONS_____

CLASS: _____

INDEX: _____

1				
	·····	3	ç	3
		1	1	
		1	1	1
	1	š	<i>x</i>	1
	1	~~~~~	~	}
	1	3	1	3
	1	3	1	1
1		i .	1	1
	·	\$	heren	4
1				

CATHOLIC JUNIOR COLLEGE JC2 Preliminary EXAMINATIONS Higher 1

PHYSICS

Paper 1

8866/01 1 September 2015 60 min

Additional Materials: Multiple Choice Answer Sheet

READ THESE INSTRUCTIONS FIRST

Write your name, tutorial group and index number on this cover page.

Write and/or shade your name, NRIC / FIN number and HT group on the Answer Sheet (OMR sheet), unless this has been done for you.

Write in soft pencil.

Do not use staples, paper clips, highlighters, glue or correction fluid.

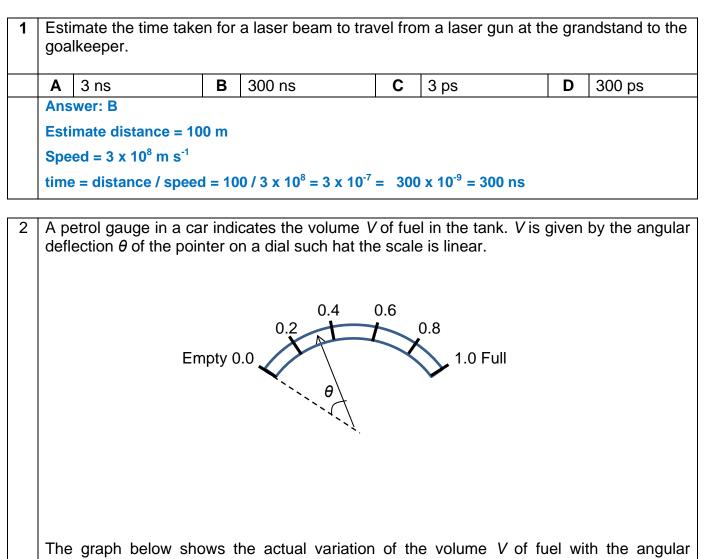
There are a total of **<u>30 Multiple Choice Questions (MCQs)</u>** in this paper.

Answer **all** questions. For each question, there are four possible answers, **A**, **B**, **C** and **D**. Choose the **one** you consider correct and record your choice in **soft pencil** on the Answer Sheet (OMR sheet) provided.

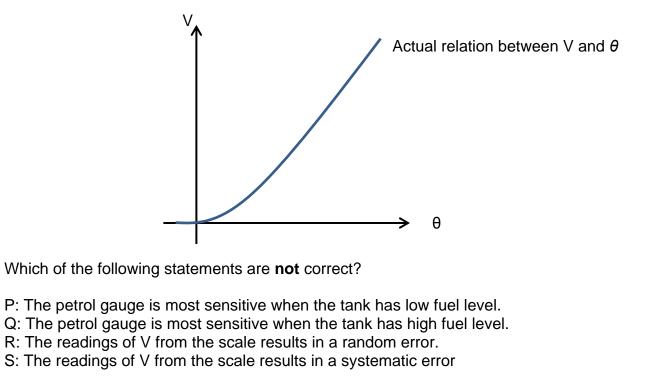
Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet. Calculators may be used.

This document consists of 12 printed pages.


[Turn over]

PHYSICS DATA:


		$3.00 \times 10^8 \text{ m s}^{-1}$
μ_{0}	=	4π x 10 ⁻⁷ H m ⁻¹
		1.60 x 10 ⁻¹⁹ C
h	=	6.63 x 10 ⁻³⁴ J s
		1.66 x 10 ⁻²⁷ kg
		9.11 x 10 ⁻³¹ kg
m_{p}	=	1.67 x 10 ⁻²⁷ kg
		9.81 m s ⁻²
	μ _o e h u m _e m _p	$\mu_{o} = 0$ e = 0 h = 0 u = 0 $m_{e} = 0$ $m_{p} = 0$

PHYSICS FORMULAE:

uniformly accelerated motion,	S	=	$ut + \frac{1}{2}at^2$
	v^2	=	u² + 2 a s
work done on / by a gas,	W	=	pΔV
Hydrostatic pressure			ρgh
resistors in series,	R	=	$R_1 + R_2 + \dots$
resistors in parallel,	$\frac{1}{R}$	=	$\frac{1}{R_1} + \frac{1}{R_2} + \dots$

The graph below shows the actual variation of the volume V of fuel with the angula deflection θ .

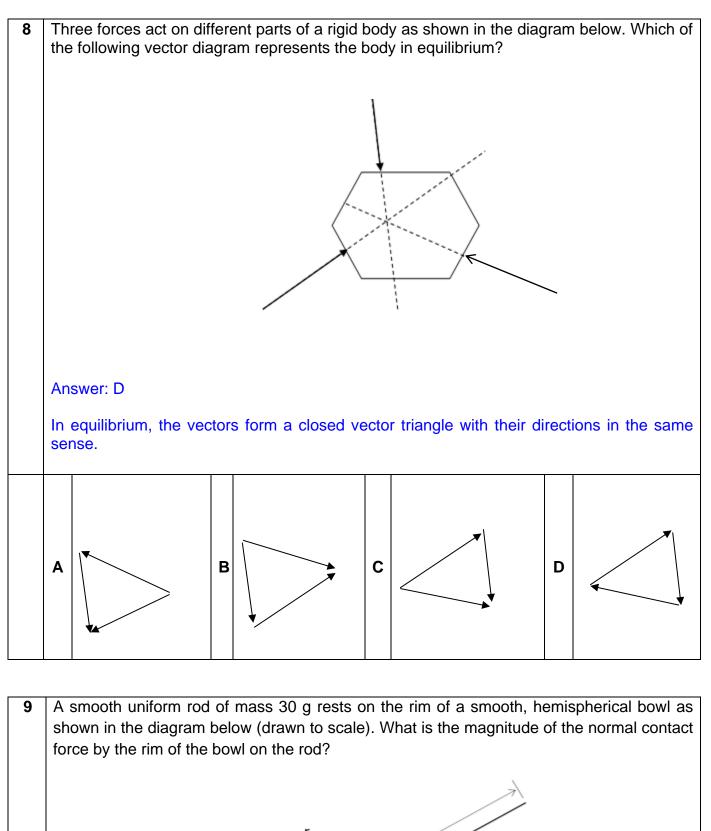
	Α	P&R	В	P & S	С	Q & R	D	Q &	S	
		wer: C								
 Low fuel level the gauge is sensitive because the change in angle is larger perchange in volume The volume recorded is always larger than the actual volume, hence there is a systematic error in the reading. Figure below shows the movement of a vehicle. It is initially moving at 10 m s⁻¹ bearing of 60° and after 2 seconds it moves in the bearing of 180° at 5 m s⁻¹. 										
	$60^{\circ} 10 \text{ m s}^{-1}$ $60^{\circ} 10 \text{ m s}^{-1}$ 5 m s^{-1} $60^{\circ} 10 \text{ m s}^{-1}$ $70^{\circ} 10 \text{ m s}^{-1}$									
		Direction) I	Magnitude/ m s ⁻¹						
	Α	180°		5.0						
	в	90°		8.7						
	С	123°		11						
	D	221°		13						
	$\Delta V \xrightarrow{f} 5 \text{ m s}^{-1}$ $\Delta V \xrightarrow{120^{\circ}} 5 \text{ m s}^{-1}$ $\Delta V = \sqrt{175} = 13.2 \text{ m s}^{-1}$ By calculation: By cosine rule, $(\Delta V)^2 = 10^2 + 5^2 - 2 (10)(5) \cos (120^{\circ})$ $\Delta V = \sqrt{175} = 13.2 \text{ m s}^{-1}$ By sine rule,									
	ΔV :	scale drawing a = 13 m s ⁻¹ ection = 220°	and meas	surement	$\frac{13}{\sin 1}$ $\theta = 4$	$\frac{.2}{20^{\circ}} = \frac{10}{\sin\theta}$	is 180 + 41	1 = 221°		

4	acce	A ball, dropped from a building, is timed to take (4.5 ± 0.1) s to fall to the ground. If the acceleration of free fall is taken to be 10 m s ⁻² , the calculated height of the building should be quoted as					
	Α	A (101 <u>+</u> 2) m					
	В	B (101 <u>+</u> 5) m					
	C (101.3 <u>+</u> 2.3) m						
	D	(101.3 <u>+</u> 4.5) m					
		Ans B $H = ut + \frac{1}{2} at^{2} = 0 + \frac{1}{2} (10)(4.5)^{2} = 101.3 m$ $\Delta H/H = \Delta a/a + 2\Delta t/t$ $\Delta H/101.3 = 0 + 2 \times (0.1 / 4.5) \Rightarrow \Delta H = 4.5 = 5 m s^{-1} (1 sf)$ $H = (101 \pm 5) m$					

5	A body is thrown vertically upwards in a medium in which the viscous drag cannot be neglected. If the times of flight for the upward motion t_u and the downward motion t_d (to return to the same level) are compared, then							
	A	$t_d < t_u$, because the average speed is smaller its downward motion as compared to its upwards motion.						
	В	$t_d < t_u$, because the net accelerating force when the body is moving downwards is greater than the net decelerating force when it is moving upwards						
	С	$t_d > t_u$, because the viscous force is greater in the downward motion as compared to its upwards motion.						
	D	$t_d > t_u$, because the net accelerating force when the body is moving downwards is smaller than the net decelerating force when it is moving upwards.						
	An	swer: D						
	dov net	the upward motion, viscous drag and gravitational force are both acting wnwards, force = gravitational force + viscous drag deceleration = (gravitational force + viscous drag)/mass						
	For the downward motion, viscous drag and gravitational force are in oppo- direction and the net acceleration force = gravitational force - viscous drag. net acceleration = (gravitational force - viscous drag)/mass							
	du	Comparing the acceleration in downwards motion is less than the deceleration during the upwards motion, hence $t_d > t_u$,						

6		nen a man is standing in an ascending lift that has a constant upward acceleration, the gnitude of the force exerted on the man's feet by the floor is always						
	Α	A equal to the magnitude of his weight.						
	В	B less than the magnitude of his weight.						
	С	greater than the magnitude of his weight.						
	D	greater than his weight only when the acceleration is greater than g.						
		Ans C						
		Let N : normal upwards force; W = weight of man ; M: mass of man						
		Net upwards force = $N - W$						
	Using N2LM "F=ma"							
		N-W = Ma $N = W + Ma \rightarrow N > W$						

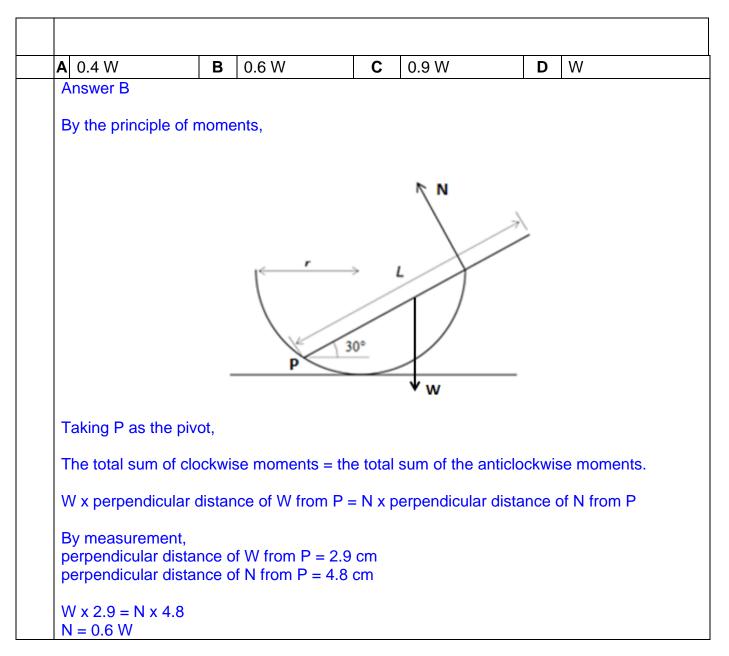
7 Three identical stationary discs, P, Q and R are placed in a line on a horizontal, flat and frictionless surface. Disc P is projected straight towards disc Q.

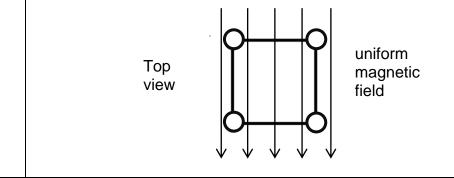


If all consequent collisions are perfectly elastic, what will be the final motion of the three spheres?

	Р	Q	R	
Α	stationary	stationary	moving right	
В	moving left	moving left	moving right	
С	moving left	stationary	moving right	
D	moving right	moving right	stationary	

Answer: A


Consider the collision between P and Q, After collision, P stops and Q move with speed of P Reason: By conservation of momentum, $m_1u_1 = m_1v_1 + m_2v_2 \Rightarrow u_1 = v_1 + v_2$ Since the collision is elastic, $\Rightarrow u_1 - u_2 = v_2 - v_1$ Solving simultaneously, $v_1 = 0$ and $v_2 = u_1$ Similarly, when Q collide with R, Q stops and R move with speed of Q


L

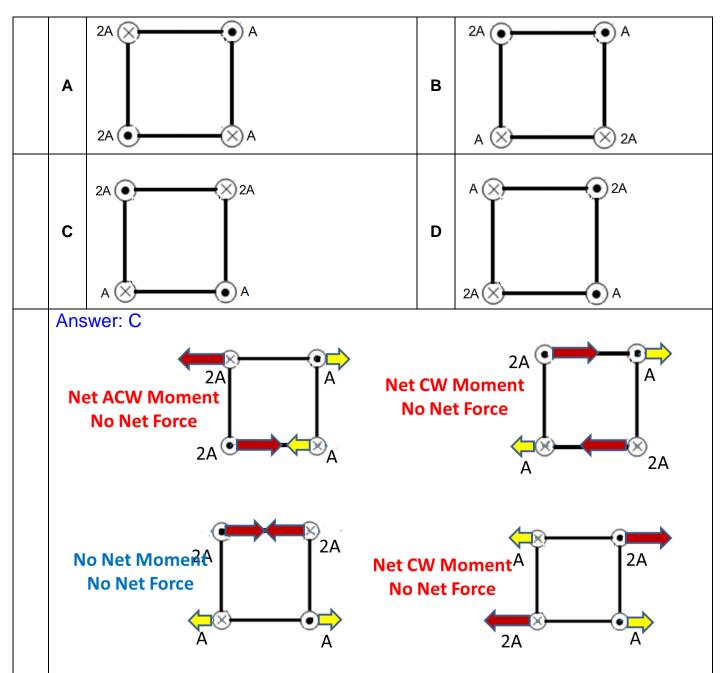
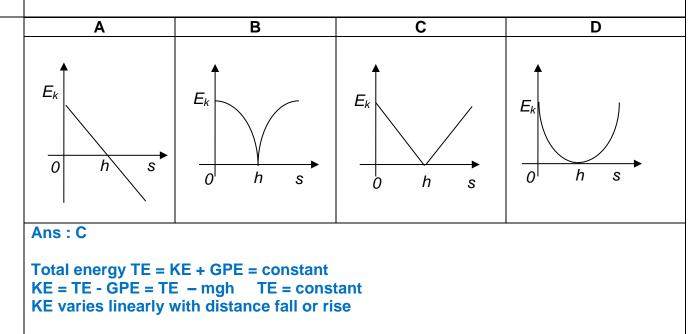
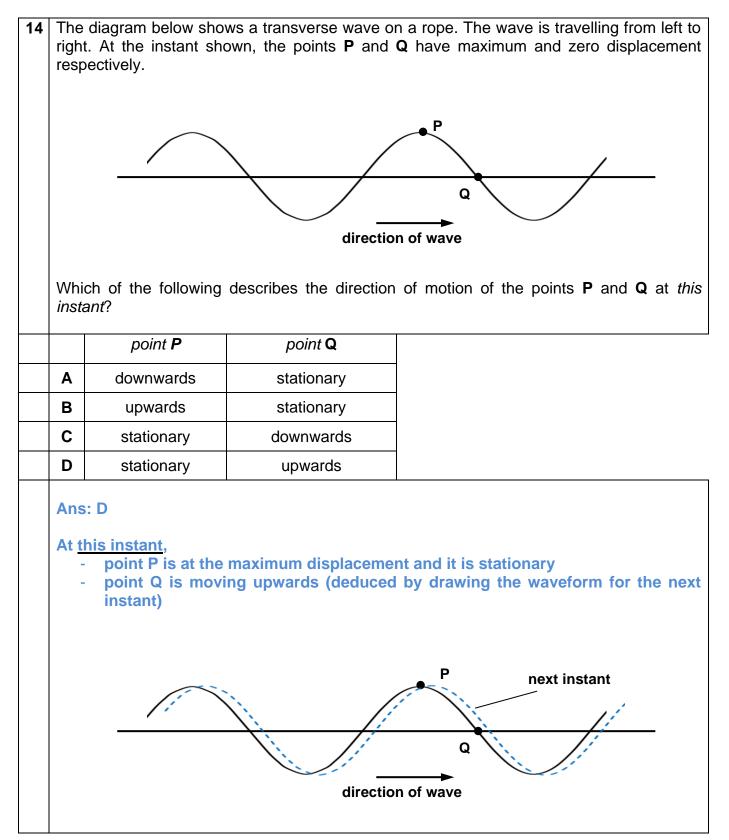

30°

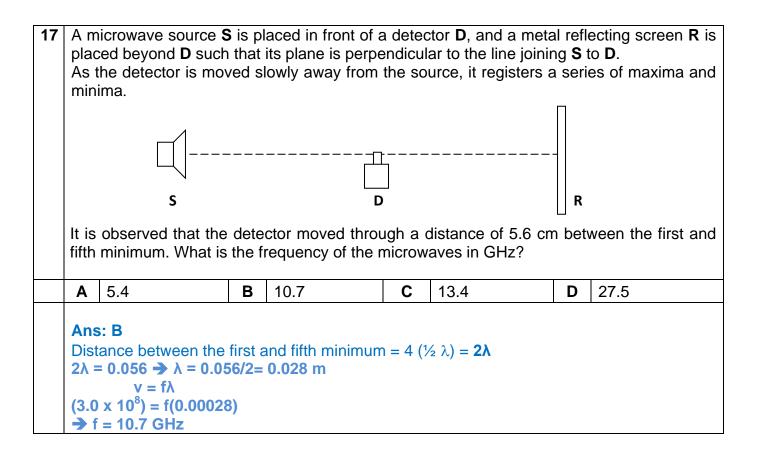
Diagram is drawn to scale

10 Four long straight vertical wires carry currents are attached to the corners of a rigid square. A uniform magnetic field is applied in the direction as shown. Which of the following configurations is in equilibrium?



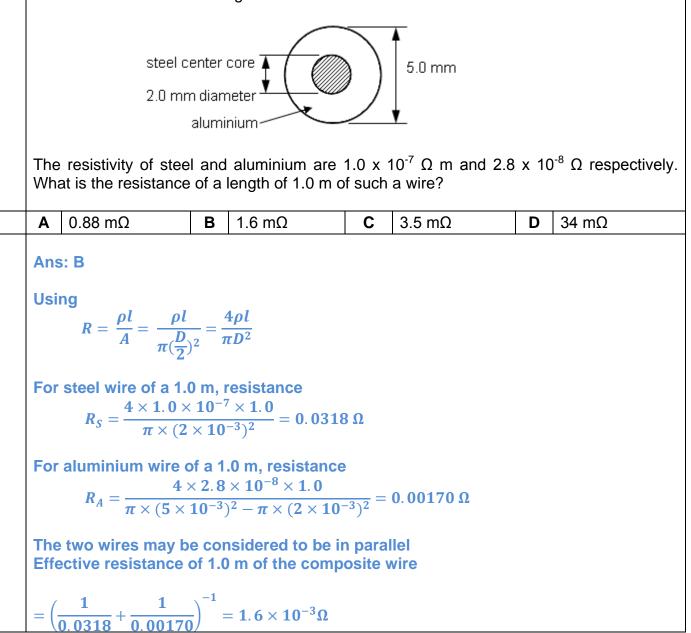

В	mgh
С	mgh – $(\frac{1}{2} mv_2^2 - \frac{1}{2} mv_1^2)$
D	mgh - $\frac{1}{2}$ mv ₁ ²
	Ans : C Loss in GPE = gain in KE + work done against friction mgh = $(\frac{1}{2} mv_2^2 - \frac{1}{2} mv_1^2)$ + work done against friction work done against friction = mgh - $(\frac{1}{2} mv_2^2 - \frac{1}{2} mv_1^2)$

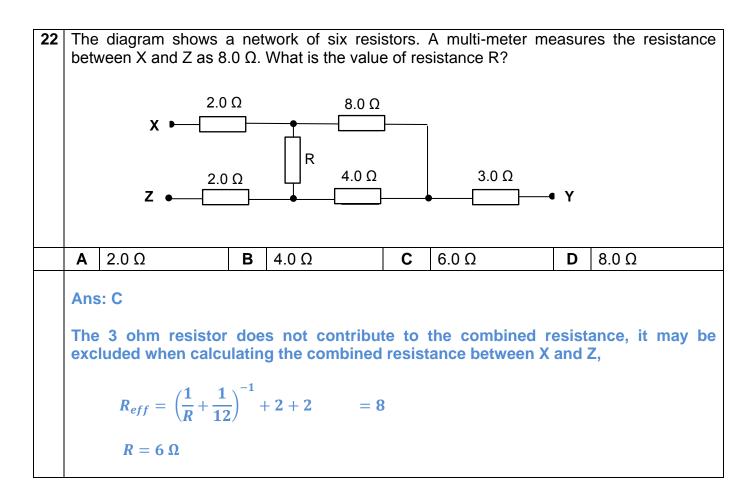
12 A ball, thrown vertically upwards, rises to a height h and then falls to its starting point. Air resistance may be taken as negligible. Which graph best shows the variation of kinetic energy E_k of the ball with the distance s traveled?

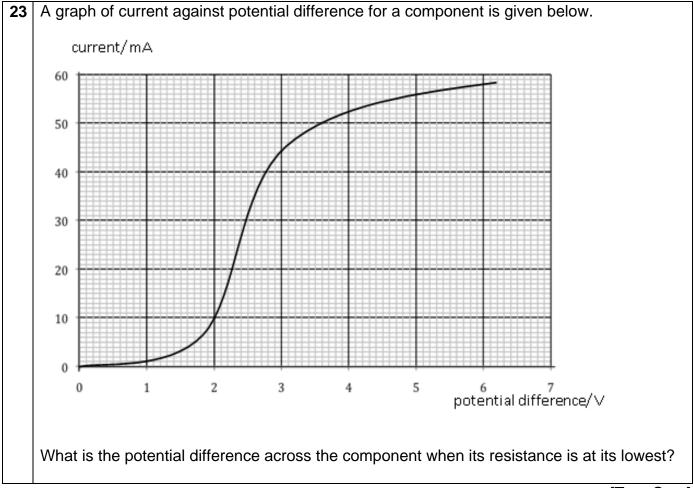

A is wrong because KE cannot be negative

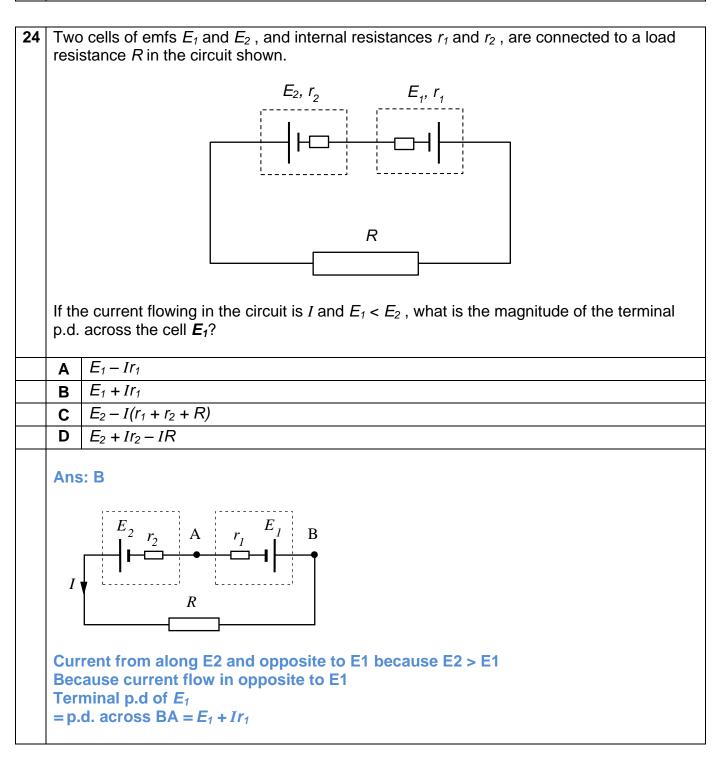
13		An electric motor is used to haul a cage of mass 100 kg up a mine shaft through a vertical height of 1000 m in 90 s. What will be the electrical power required if the overall efficient is 70 %?
	•	
	Α	1.6 kW
	В	7.8 kW
	С	15.6 kW
	D	952 kW
		Ans C
		Output power = mgh / t = 100 x 9.81 x 1000 / 90 = 10900 W
		Efficiency = output power / input power
		70 / 100 = 10900 / input power
		Input power = 15600 W

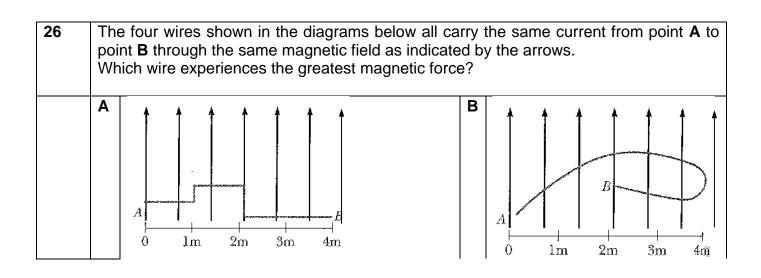
15	A plane wave of amplitude A is incident on a surface of area S placed so that it is perpendicular to the direction of travel of the wave. The energy per unit time intercepted by the surface is <i>E</i>.The amplitude of the wave is doubled and the area of the surface is reduced by half.How much energy per unit time is intercepted by this smaller surface?								
	Α	4 <i>E</i>	В	2 <i>E</i>	С	E	D	$E_{/2}$	
	Ans	: B					I		
	Ans: B Intensity = Power / Area Power = Intensity x Area1 Intensity ∞ Amplitude ²								
	4/3								
		E = 2							
	E' =	= 2E							

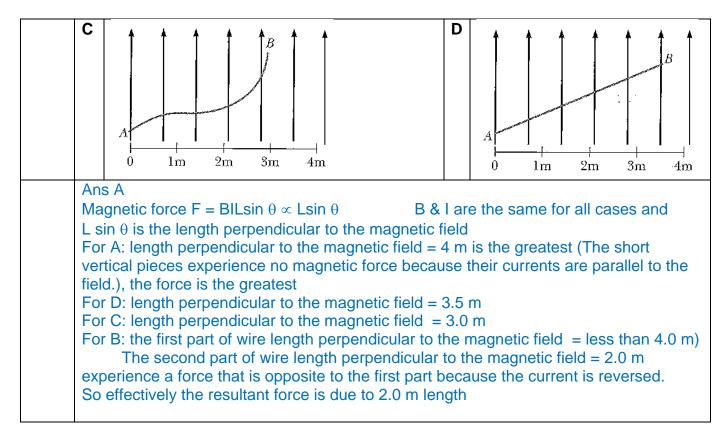

16	Plane waves of wavelength λ in a ripple tank approach a straight barrier parallel to the wave crests. There is a gap of width <i>w</i> in the middle of the barrier. Which of the following λ and <i>w</i> will produce the largest diffraction?							
		λ / cm	w/cm					
	Α	0.5	2.0					
	В	0.5	4.0					
	С	1.5	2.0					
	D	1.5	4.0					
	 Ans: C Diffraction is large when w is small and <i>λ</i> is large By comparing A & B, C & D, A & C, B & D, Option C will produce the largest diffraction 							




18	Two wave generators S_1 and S_2 produce water waves of wavelength 2.0 m. They are placed 6.0 m apart as shown and are operated in phase. A sensor D which measures the amplitude of water waves is 7.0 m away from S_1 as shown in the diagram below.
	7.0 m
	D The shortest distance D could be moved along the straight line S ₁ D in order to detect large amplitude of the resultant wave motion is
	A 1.0 m away from S ₁
	B 3.0 m away from S ₁
	C 1.0 m towards S ₁
	D 3.0 m towards S ₁
	Ans: A

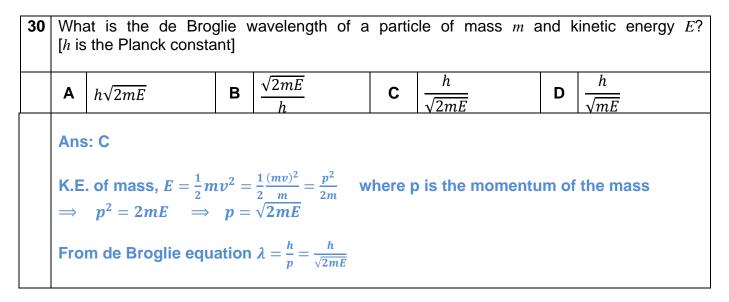

A	2 J	В	10 J	С	50 J	D 625 J				
				1			•			
	s: B									
_	$\frac{V^2}{R} \implies V^2 = 125$	_								
P =	$\frac{1}{R} \Rightarrow V^2 = 125$	× 5								
\rightarrow	n d across heater	V =	$\sqrt{625} = 25 V$							
	\Rightarrow <i>p.d across heater</i> , <i>V</i> = $\sqrt{625} = 25 V$									
	W									
V =	$V = \frac{W}{O}$									
	U	0.0000	tod to host							
	nount of energy c									
		= 10/								
	$= VQ = 25 \times 0.4 =$									
	$= VQ = 25 \times 0.4 =$									





Α	0.90 V	В	2.50 V	С	3.00 V	D	5.00 V
Ans							
Ans							
Cor	sidering each op	tion					
	ion A : when V =						
	ion B : when V = 3						
Opt	ion C : when V =	3.00	V, I = 44 mA →	R = 3.0	0 <mark>0 / 0.044 = 68</mark> Ω		
Opt	ion D : when V =	5.00	V, I = 56 mA →	R = 5.0	0 / 0.056 = 89 Ω		

25	W ₁ ,	W_2 and W_3 are three lo	ng parallel wires	s carrying currents in a v	ertical plane as shown.
		W ₁	W ₂	W ₃	
		5 A 🖡	5 A	10 A	
	The	e resultant force on wire	W ₂ is		
	Α	zero			
	В	perpendicular to the p	lane of the pape	r	
	С	towards W_1			
	D	towards W ₃			
		Ans C			
				rection will attract each o s will repel one another.	other while wires
		Hence W ₂ will be repe	lled by W_3 and a	attracted by W ₁ .	
		Both forces on W2 act	to the left		
		Therefore the resultan	t force on W_2 is	towards W ₁ .	


27	freely centre	about a horizontal as shown in the dia	axis Igran	has sides of length <i>L</i> a PQ , parallel to one pain above. The coil is situation netic field of flux density	ir of ted b	sides of the o	coil,	through its
		[[P ~ [S≈	Coil Q X		- rider		
	beam by pla	attached to the coil.	Whe	tical plane by moving a new series of the se	igh t	he coil, equilibi	-	
	A	Mg ILN	В	$\frac{Mgx}{2IL^2N}$	С	$\frac{Mgx}{IL^2N}$	D	$\frac{2Mgx}{IL^2N}$

Ans C At equilibrium, by Principle of Moments: Torque of coil = Moment of rider $F_B \times L = Mg \times x$ $BIL(N) \times L = Mg \times x$ $B = \frac{Mgx}{IL^2N}$

28	The wave nature of electrons is suggested by experiments on							
	A line spectra of atoms							
	B measuring maximum kinetic energy of emitted electrons							
	С	the photoelectric effect						
	D electron diffraction by a crystalline material							
	Diff The	s: D Fraction is a phenomenon related to waves. A fact that electrons diffract when passing through a crystalline materials proves t electrons exhibit wave properties.						

29	Transitions between three energy levels in a particular atom give rise to three spectra lines of wavelengths in decreasing magnitudes, λ_1 , λ_2 and λ_3 . Which one of the following equations correctly relates λ_1 , λ_2 and λ_3 ?
	$\mathbf{A} \begin{vmatrix} \frac{1}{\lambda_3} = \frac{1}{\lambda_2} - \frac{1}{\lambda_1} \\ \mathbf{B} \begin{vmatrix} \frac{1}{\lambda_3} = \frac{1}{\lambda_2} + \frac{1}{\lambda_1} \end{vmatrix} \mathbf{C} \begin{vmatrix} \frac{1}{\lambda_3} = \frac{1}{\lambda_1} - \frac{1}{\lambda_2} \\ \mathbf{D} \end{vmatrix} \lambda_1 = \lambda_2 + \lambda_3$
	Ans: B
	E_3 L_1 E_2
	λ_3 λ_2
	$ +$ $+$ $=$ E_1
	$\Delta E3 = E_3 - E_1 = \frac{hc}{\lambda_3} (1)$
	$\Delta E2 = E_2 - E_1 = \frac{hc}{\lambda_2} (2)$

$$\Delta E1 = E_3 - E_2 = \frac{hc}{\lambda_1} - - - (3)$$
$$\Delta E3 = \Delta E2 + \Delta E1$$
$$\frac{hc}{\lambda_3} = \frac{hc}{\lambda_2} + \frac{hc}{\lambda_1}$$
$$\frac{1}{\lambda_3} = \frac{1}{\lambda_2} + \frac{1}{\lambda_1}$$

End of Paper -