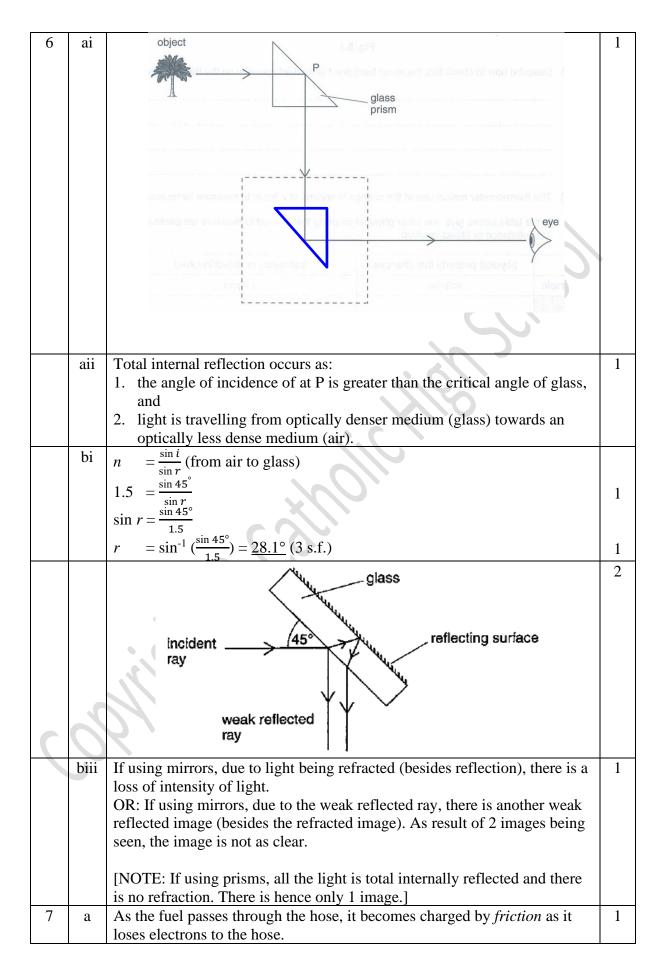
Catholic High School | O-Level Physics <u>5059</u> Nov <u>2015</u> Suggested Answers

NOT IN SYLLABUS:				
<u>P1:</u>	-			
<u>P2:</u>	-			

Paper 1 [40 marks]


1	С	11	D	21	С	31	С
2	D	12	B	22	Α	32	B
3	B	13	Α	23	С	33	С
4	D	14	B	24	С	34	D
5	B	15	Α	25	Α	35	B
					-		
6	C	16	B	26	B	36	D
6 7	C D	16 17	B A	26 27	B B	36 37	D C
7	D	17	A	27	B	37	С
7 8	D C	17 18	A A	27 28	B A	37 38	C D

- *Q.1: C Most appeared to be aware of the order of magnitude of the diameter of an atom.
 Only a significantly smaller proportion were aware of the order of magnitude of the diameter of the Earth.
 (Both A and B are incorrect.)
- *Q. 5: B Those who chose D were clearly aware of the effect of air resistance on the velocity of the falling box, but did not convert the increasing magnitude of the velocity to a displacement-time graph of increasing positive gradient. (D is incorrect.)
- *Q.7: D In Newton's Second Law of Motion equation $F_R = ma$, F_R is resultant force. The resultant force acting on the car is $F_R =$ driving force - frictional force, i.e. $F_R =$ driving force - 1200 (800)(2.5) = driving force - 1200 Hence, driving force = 2000 + 1200 = <u>3200 N</u> (A is incorrect.)
- *Q. 26: B For a converging lens, the rays will bend away from its original direction, *towards* the principal axis. Also, after passing through the converging, the rays do not necessarily converge to meet (think of magnifying glass). (C is incorrect.)
- *Q. 34: D When the amount of light *increases*, the resistance across the LDR *decreases*. Hence the p.d. across the LDR *decreases* and the *reading on the voltmeter across the resistor increases*. (C is incorrect.)

Paper 1997	<u>2 [80</u>]	marks]	
1	a	 Using a stopwatch, record t₁ and t₂: timing for first and second set of 20 complete movements. 	1
		2. Calculate $t_{av} = \frac{t_1 + t_2}{2}$: average time for 20 complete movements. 3. Calculate $t = \frac{t_{av}}{20}$: average time for 1 complete movement.	1
		20° and 20° and 20° and 20° and 20° and 20°	1
	bi	The distance moved by the athlete <i>along the track</i> .	1
	bii	1. Work done by athlete = (force)(distance along track) (i.e. $W = Fd$)	1
		2. Power of the athlete $=\frac{\text{work done by athlete}}{\text{average time for 1 complete movement}}$ (i.e. $P = \frac{W}{t}$)	1
2	a	When an object is in equilibrium, the sum of clockwise moments about the pivot (/ any point) is equal to sum of anti-clockwise moments about the same pivot (/ same point).	1
	bi	With a 30 N force applied vertically (upwards) at A, the perpendicular distance between the line of action of the force and the pivot is the largest.	1
	bii	M = Fd = (30)(20) = 600 Ncm or 6.0 Nm)	1
	biii	Taking moments about the pivot, Clockwise moment by brake cable = Anticlockwise moment by hand-grip 600 = F(1.2) $F = M \div d = 600 \div 1.2 = 500 \text{ N} (2 \text{ or } 3 \text{ s.f.})$	1
3	ai1	$p = \frac{F}{A}$ Force that <i>oil</i> exerts on piston P = pA = (3.0 × 10 ⁵)(5.0 × 10 ⁻⁵) = <u>15.0 N</u> (3 s.f.)	1 1
	ai2	Force that <i>atmosphere</i> exerts on piston P = pA = $(1.0 \times 10^5)(5.0 \times 10^{-5})$	1
C	ai3	= 5.00 N (3 s.f.) By equilibrium of forces, F + force by oil thin sheet of metal F + 5.0 = 15 strong metal with hole underneath R F + 5.0 = 15 F = 15 - 5.0 = 10.0 N (3 s.f.)	1
	aii	Since the pressure transmitted throughout the oil is the same, as piston Q has a <i>larger</i> cross-sectional area (than piston P), a larger force will be exerted on the metal plate at R by piston Q.	1
	bi	The air molecules are in constant, random motion. In Fig. 3.2b, the number of air molecules per unit volume has increased. The air molecules hence collide <i>more frequently</i> with the surface of the air bubble, hence exerting a larger force per unit area.	1 1
	bii	Air is compressible, so any pressure exerted on the hydraulic press would be used to compress the bubbles of air first.	1

Paper 2 [80 marks]

	a	Gravitational force acting per unit ma		1
	b	•	$= m(g_{\text{final}} - g_{\text{initial}})$	
		=(80)(9.8-9.7)	·	
		$= \underline{8.00 \text{ N}} (3 \text{ s.f.}$		1
	с	Initial G.P.E. at height of 39 km (at st	art of free-fall)	
		$= mgh = (80)(9.7)(39\ 000)$		
		$= 30\ 264\ 000\ J$		
		Final G.P.E. at height of 3.0 km (at end of free-fall)		
		= mgh = (80)(9.8)(3000)		
		= 2 352 000 J		
		Loss in GPE during free-fall $= 30.26$	4 000 - 2 352 000	1
			$2\ 000 = 2.79 \times 10^7 \text{ J} (3 \text{ s.f.})$	1
	d	Gravitational potential energy (G.P.E.		
		converted to kinetic energy (K.E.) of		1
			Č ()	
		By Conservation of Energy, Loss of C	G.P.E. = Gain in K.E.	1
		Since $mgh = \frac{1}{2}mv^2 \Rightarrow v = \sqrt{2gh}$, spee	ed of the diver does not depend on	
		mass.		
5	а	Insert the bulb of the thermometer cor	npletely into a beaker of pure,	1
		melting ice.		
		The lower fixed point is marked on th	e thermometer when the level of the	
		mercury is steady.		
		[NOTE: the lower fixed point is 0 °C,	not -10 °C.]	
	b	physical property that changes	substance or object involved	1
		electromotive force, e.m.f.	thermocouple	ar
		electrical resistance	metal	01
		proceuro	gas	51
		pressure	8	
	c	Heat loss by water = Heat gain by		
	с	Heat loss by water = Heat gain by $(mc\Delta\theta)_{water}$ = $(C\Delta\theta_o)_{thermome}$	thermometer eter	
	c	Heat loss by water = Heat gain by	thermometer eter	2
	с	Heat loss by water = Heat gain by $(mc\Delta\theta)_{water}$ = $(C\Delta\theta_o)_{thermome}$	thermometer	2

	b	As the fuel becomes more and more charged, a spark can occur to ignite the fuel.	1
	0		1
	c	Connecting the wire allows electrons to flow from the ground to the aircraft to neutralise any excess positive charges on the aircraft.	1
	d	Lightning / Damage to electronic equipment (such as hard drives).	1
8	ai	V - IR	2
		$I = \frac{V}{V} = \frac{2.9}{0.906} = 0.906 \text{ A} (3 \text{ s.f.})$	
	aii	$V = -IR$ $I = \frac{V}{R} = \frac{2.9}{3.2} = \underline{0.906 \text{ A}} (3 \text{ s.f.})$ $R = \frac{V}{I} = \frac{12}{0.906} = \underline{13.2 \Omega} (3 \text{ s.f.})$ $I = 1$	1
	bi		
	01	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$	
		<i>R</i> of XB and lamp $=\frac{(R_1)(R_2)}{R_1+R_2} = \frac{(3.2)(3.2)}{3.2+3.2} = 1.6 \Omega$	1
		$R_1 + R_2 = 3.2 + 3.2$	1
		Resistance of AX = $10 - 3.2 = 6.8 \Omega$	1
		Total resistance $= 1.6 + 6.8 = \underline{8.4 \Omega}$	
	bii	at A: $\frac{12.0 \text{ V}}{0.0 \text{ V}}$	1
	1	at B: <u>0.0 V</u>	
	biii	The circuit in Fig. 8.2 allows the lamp to be dimmed completely (when	1
		the slider is at B and the p.d. across the lamp is 0 V).	
		In Fig. 8.1, when the resistance of R_1 is maximum, there is still a p.d. of	
		2.9 V across the lamp, so it cannot be dimmed completely.	
0	• • •	[NOTE: both lamps can be at the same maximum brightness.]	
9	ai1	The p.d. across X is proportional to the current in X.	1
	ai2	The p.d. across X increases at an increasing rate when the current is increased.	1
	aii	The longer the length of the wire, the smaller the current that causes it to	1
		melt.	1
	aiii	The two wires have different lengths, and hence different resistances ($R = L$	1
		$\rho_{\overline{A}}^{L}$).	
		Hence using $V = IR$, with the same current but different resistances, the p.d.	1
		across the two wires is different.	1
	bi	With a strong wind, the temperature of the wires is reduced, resulting in a	1
		lower resistance and hence a lower p.d. for the same current.	
	bii	Both wires would melt at a higher current.	1
		[NOTE: With a lower resistance, the wires will melt at a higher current, as	
	5	$P_{\text{loss}} = I^2 R.$]	
	ci	1. By conduction: The thermal energy is conducted along the wire to	2
	\square	both ends, and to the metal clips.	Any
		2. By convection: The thermal energy heats up the air above the wire,	two
		which expands, becomes less dense and rises. The surrounding cooler,	
		dense air sinks to replace it.	
		3. By radiation: The thermal energy could be lost via infra-red radiation to	
		the surrounding air.	
	cii	The ends of the wire are connected to the metal clips which are good	1
		conductors of heat, and would be able to conduct the heat at the ends of	
		the wire away quickly.	

Nov 2015_Suggested ANSWERS_as at July 2023

		$\frac{\text{velocity}}{\text{m/s}} = \frac{1}{2} + \frac{1}{2} +$	
	bi	Distance between A and B = area under graph $= \frac{1}{2}(2.0)(3.0)$ = <u>3.00 m</u> (3 s.f.)	1 1
	bii	Distance between B and C = area under graph $= \frac{1}{2}(2.0)(3.0 + 6.0)$ $= 9.00 \text{ m} (3 \text{ s.f.})$	1
	ci	displacement/m	1
	cii	The gradient of the graph after D is constant.	1
\langle	di	normal reaction force (friction + air resistance) weight	2
	dii	After D, the component of the weight <i>along the slope</i> is equal to the resistive forces acting on the skier.(OR: There is no resultant force <i>along the slope</i>.)Hence, by Newton's First Law, since there is no resultant force, the skier	1 1
11 E	ai	moves at constant velocity along the slope. Both traces have the same period of 2 divisions on the c.r.o. This means that both sounds have the same frequency, and hence the same pitch.	1 1

10

a

	· ··		
	aii	Both traces have different amplitudes.	1
	bi	It is an imaginary line joining corresponding crests (or troughs) of waves.	1
	bii	Microphone B is further away from the loudspeaker.	1
		Hence, the same wavefront takes a longer time to arrive at microphone B.	1
	biii	t = (2.5)(0.20)	1
	1	= 0.500 ms (3 s.f.)	1
	biii	$v = \frac{\Delta s}{t} = \frac{0.17}{5.0 \times 10^{-4}}$	1
	2	$v = \frac{1}{t} = \frac{1}{5.0 \times 10^{-4}}$ = $\frac{340 \text{ m s}^{-1}}{1000000000000000000000000000000000$	1
11 O	a		2
	bi	As the magnet rotates, the coils experience a change in magnetic flux linkage. By Faraday's Law of Electromagnetic Induction, an e.m.f. is induced in the coils.	1
	bii	1. An iron core concentrates the magnetic field lines in the core.	1
		2. Iron is a soft magnetic material and allows the changing magnetic field	either
		to change direction easily in the core.	one
	ci	When the N-pole of the magnet approaches coil P, using right-hand grip	1
		rule, a North-pole of a magnetic field is produced at coil P.	
		This opposes the magnetic effect producing the induced e.m.f., using	1
		Lenz's Law, as unlike poles repel.	
	cii	Maximum power produced, $P = V^2/R$	1
		$= (20)^2/(2500)$	1
		= (20)/(2500) = 0.160 W (3 s.f.)	
		1 - 0.100 W (3 8.1.)	1
			1
			1
	d	Slip rings	1

U