
SQL Databases

CPDD Computer Education Unit Version: Feb 2019
1

 Name: __________________________ () Class: _________ Date: _________

Lesson 1: Introduction to Databases

Instructional Objectives:

By the end of this task, you should be able to:

 Draw entity-relationship (ER) diagrams to show the relationship between tables.

 Determine the attributes of a database: table, record and field.

 Explain the purpose of and use primary, secondary, composite and foreign keys in

tables.

 Explain with examples, the concept of data redundancy and data dependency.

 Reduce data redundancy to third normal form (3NF).

SQL Databases

CPDD Computer Education Unit Version: Feb 2019
2

What is a database?

A database is a collection of data stored in an organised or logical manner. Storing
data in a database allows us to access and manage the data. Examples of
databases in real-life include:

 Patient medical records
 Supermarket inventory
 Contact list

Relational database

In the relational database model, data is stored in relations and represented in the
form of tuples (rows). A relational database is a collection of relational tables.

A table is a two-dimensional representation of data stored in rows and columns.

A table description can be expressed as:

TableName (Attribute1, Attribute2, Attribute3, …)

For example,

Student (RegNo, Name, Gender, CivicsClass, CivicsTutor)

A table is a relation if it fulfils the following conditions:
 Values are atomic
 Columns are of the same kind
 Rows are unique
 The order of columns is insignificant
 Each column must have a unique name

Below is an example of a table Student18S12, showing data for students from civics
class 18S12.

Field

Record

SQL Databases

CPDD Computer Education Unit Version: Feb 2019
3

Tables are made up of records and fields.

A record is a complete set of data about a single item. For this example, a record
refers to the complete set of data of a particular student.

A field refers to one piece of data about a single item. For this example, the table
has 4 fields – RegNo, Name, Gender and MobileNo.

Candidate keys

A candidate key is defined as a minimal set of fields which can uniquely identify
each record in a table. It tells a particular record apart from another record. A
candidate key should never be NULL or empty. There can be more than one
candidate key for a table. A candidate key can also be a combination of more than
one field.

Primary keys

A primary key is a candidate key that is most appropriate to become the main key
for a table. It uniquely identifies each record in a table and should not change over
time. That is, a primary key tells a particular record apart from another record.

Secondary keys

Candidate keys that are not selected as primary key are known as secondary keys.

Composite keys

Sometimes, more than one field is needed to uniquely identify a record. A
composite key is a combination of two or more fields in a table that can be used to
uniquely identify each record in a table. Uniqueness is only guaranteed when the
fields are combined. When taken individually, the fields do not guarantee
uniqueness.

Take a look at the table Student on the next page.

Test your understanding
How many records does the table Student18S12 have?

Test your understanding
Which of the candidate key is a suitable primary key for the table
Student18S12?

Test your understanding
Which of the fields in table Student18S12 are candidate keys?

SQL Databases

CPDD Computer Education Unit Version: Feb 2019
4

Now, a single field is not able to uniquely identify a record. A composite key
composing 2 fields is needed uniquely identify a record.

Foreign keys

Another table, ClassInfo, as shown below, stores the information about each civics
class.

CivicsClass is chosen to be the primary key (PK) for table ClassInfo.

Notice that the primary key in table ClassInfo (i.e., the CivicsClass field) is
related or linked to the CivicsClass field in table Student. This makes
CivicsClass field in table Student a foreign key (FK).

Test your understanding
Which 2 fields would you choose to form a composite key for the above
table Student?

CivicsClass 18S12

CivicsClass 18A10

SQL Databases

CPDD Computer Education Unit Version: Feb 2019
5

ClassInfo

CivicsClass (PK)

CivicsTutor

HomeRoom

A foreign key is an attribute (field) in one table that refers to the primary key in
another table.

Data redundancy

Data redundancy refers to the same data being stored more than once.

Below is an example of Student table.

As we can see, data for CivicsClass and CivicsTutor are repeated for students
who are in the same civics class. This is data redundancy.

This will cause issues when inserting, updating and deleting data from the database.
See the table below for examples.

Inserting data

A new student cannot be inserted unless a civics class and a
civics tutor have been assigned.

Updating data

If Peter Lim decide to leave the college, all the records in the
Student table would need to be updated. If we miss any record,
it will lead to inconsistent data.

Deleting data If all the records of the Student table are deleted, information on
civics class and civics tutor will be lost.

Data dependency
In order to normalise data, we need to understand data dependencies, specifically
functional and transitive dependencies.

Student

RegNo

Name

Gender

CivicsClass (FK)

SQL Databases

CPDD Computer Education Unit Version: Feb 2019
6

Functional dependency

Attribute Y is functionally dependent on attribute X (usually the primary key), if for
every valid instance of X, the value of X uniquely determines the value of Y (X  Y).

For example, suppose we have a Student table with the following attributes:
MatricNo, Name, Gender, CivicsClass and CivicsTutor. MatricNo is a unique
number assigned to every student in the college.

MatricNo uniquely identifies the Name because if we know the MatricNo, we can
know the Name associated with it. Therefore, we can say Name is functionally
dependent on MatricNo (MatricNo  Name).

Transistive dependency

A functional dependency is said to be transitive if it is indirectly formed by two
functional dependencies. Z is transitively dependent on X if Y is functionally
dependent on X but X is not functionally dependent on Y, and Z is functionally
dependent on Y. In other words, X  Z is a transitive dependency if the following
hold true:

 X  Y
 Y does not  X
 Y  Z

For example, CivicsClass is functionally dependent on MatricNo (MatricNo 
CivicsClass) but MatricNo is not functionally dependent on CivicsClass. On the
other hand, CivicsTutor is functionally dependent on CivicsClass (CivicsClass
 CivicsTutor). Therefore, CivicsTutor is transitively dependent on MatricNo
(MatricNo  CivicsTutor).

Normalisation
Normalisation is the process of organising the tables in a database to reduce data
redundancy and prevent inconsistent data. There are at least three normal forms
associated with normalisation: first normal form (1NF), second normal form (2NF),
and third normal form (3NF).

First Normal Form
For a table to be in 1NF, all columns must be atomic. This means there can be no
multi-valued columns – i.e., columns that would hold a collection such as an array or
another table. In another words, the information in each column cannot be broken
down further.

Consider the following table:

It is assumed that every civics class only has one civics tutor, and each CCA has only
one teacher in-charge (IC).

SQL Databases

CPDD Computer Education Unit Version: Feb 2019
7

This table is not in 1NF because the CCAInfo column contains multiple values.

In order for the table to be in 1NF, we split CCAInfo into two single-value columns
CCAName and CCATeacherIC. Notice that the students with MatricNo 2 and
MatricNo 5 have multiple CCAs. We keep this information intact by splitting their
records into multiple records, each corresponding to a different CCA. The resulting
table is shown below.

The values for CCAName and CCATeacherIC are now atomic for each row. The
primary key for the above table will be the composite key formed by MatricNo and
CCAName.

Second Normal Form
For a table to be in 2NF, it must satisfy two conditions:

1) The table should be in 1NF
2) Every non-key attribute must be fully dependent on the entire primary key.

This means no attribute can depend on part of the primary key only.

Name, Gender, CivicsClass, CivicsTutor and HomeRoom is dependent on only part
of the primary key, MatricNo. CCATeacherIC is dependent only on CCAName. Thus,
we decompose into three tables as shown below.

The primary key for table Student will be MatricNo. MatricNo and CCAName will
form a composite key for table StudentCCA and CCAName will be the primary key for
table CCAInfo.

Third Normal Form
For a table to be in 3NF, it must satisfy two conditions:

1) The table should be in 2NF
2) The table should not have transitive dependencies

SQL Databases

CPDD Computer Education Unit Version: Feb 2019
8

Looking at table Student, CivicsTutor and HomeRoom are dependent on
CivicsClass and CivicsClass is dependent on MatricNo. Therefore,
CivicsTutor and HomeRoom are transitively dependent on MatricNo. To remove the
transitive dependency, we decompose the Student table as follows:

MatricNo remains the primary key for table Student and CivicsClass will be the
primary key of the newly formed table Civics.

The final design after normalisation is represented below:
Student (MatricNo, Name, Gender, CivicsClass)

Civics (CivicsClass, CivicsTutor, HomeRoom)

StudentCCA (MatricNo, CCAName)

CCAInfo (CCAName, CCATeacherIC)

The primary key for each table is indicated by underlining one or more attributes.
Foreigh keys are indicated by using a dashed underline.

This design could also be represented using an Entity-Relationship diagram, also
known as an E-R diagram.

Entity-Relationship diagram
Designers of a large database will normally construct a diagram of the planned
database. An example of this is entity-relationship (E-R) diagram.

Note: For the purposes of this syllabus, we will only cover a simplified convention for
drawing E-R diagrams.

An entity is a specific object of interest. Collective nouns or nouns are usually used
to name entities. Entities are represented by rectangles.

For example,

Relationship describe a link between two entities.

One of the following three relationships can exist between two entities.

1. One to One

This can be represented by:

Student

Entity 1 Entity 2

SQL Databases

CPDD Computer Education Unit Version: Feb 2019
9

For example, at a concert each ticket entitles you to a particular seat and
each seat is linked to only one ticket.

2. One to Many

This can be represented by:

For example, a student can belong to only one civics class but a civics class
can have many students.

3. Many to Many

This can be represented by:

For example, a student can join many CCAs and one CCA can have many
students.

To implement a many-to-many relationship in a database system, we will
usually decompose a many-to-many relationship into two (or more) one-to-
many relationships. For example,

Representing the normalised tables,

Student (MatricNo, Name, Gender, CivicsClass)

Civics (CivicsClass, CivicsTutor, HomeRoom)

StudentCCA (MatricNo, CCAName)

CCAInfo (CCAName, CCATeacherIC)

using an E-R diagram, we will have the following:

Ticket Concert Hall

Seat

Entity 1 Entity 2

Civics Student

Entity 1 Entity 2

Student CCAInfo

Student StudentCCA CCAInfo

SQL Databases

CPDD Computer Education Unit Version: Feb 2019
10

References

1. Burdett, A. (2016). BCS glossary of computing. BCS Learning and Development Limited.

2. Captain, F. A. (2015). Six‐step relational database design: A step by step approach to

relational database design and development. Place of publication not identified: Publisher

not identified.

3. LANGFIELD, S. D. (2015). Cambridge International AS and A Level Computer Science

Coursebook. Place of publication not identified: Cambridge University Press.

4. Archiveddocs. (n.d.). Lesson 2: Designing a Normalized Database. Retrieved from

https://docs.microsoft.com/en‐us/previous‐versions/tn‐archive/cc505842(v=technet.10)

5. Introduction to Database Keys. (n.d.). Retrieved from

https://www.studytonight.com/dbms/database‐key.php

6. Watt, A. (2014, October 24). Database Design ‐ 2nd Edition. Retrieved from

https://opentextbc.ca/dbdesign01/

7. Singh, C., & Prasad. (2018, December 14). Functional dependency in DBMS. Retrieved from

https://beginnersbook.com/2015/04/functional‐dependency‐in‐dbms/

8. Chapter 6. Entity‐Relationship Modelling. (n.d.). Retrieved from

https://www.cs.uct.ac.za/mit_notes/database/htmls/chp06.html#one‐to‐one‐relationships‐

between‐two‐entities

Civics Student StudentCCA CCAInfo

