2021 JC2 H2 Preliminary Examination Paper 2 Suggested Solutions

1	(a)		The principle of conservation of linear momentum states that the total momentum of a system of interacting bodies <u>remain constant</u> provided <u>no external force</u> acts on the system.	1
	(b)	(i)	By the principle of conservation of momentum, $m_X u_X + m_Y u_Y = m_X v_X + m_Y v_Y$	
			4.0(500) + 28.0(340) = 4.0(220) + 28.0(v)	1
			$v = 380 \text{ m s}^{-1}$	1
		(ii)	Relative speed of approach = $u_x - u_y = 500 - 340 = 160 \text{ m s}^{-1}$	1
			Relative speed of separation = $v_Y - v_X = 380 - 220 = 160 \text{ m s}^{-1}$	
			Since the relative speeds of approach and separation are the same, the collision is elastic.	1
			Or	
			Check whether total final kinetic energy equals the total initial kinetic energy.	
		(iii)	The forces on the two bodies (or on X and on Y) are equal in magnitude and opposite in direction	1
			The duration of impact for both forces is the same <u>and</u> force is change in momentum / time	1

3	(a)	Internal energy is the sum of microscopic kinetic energy and potential energy of all the molecules in the gas			
		Microscopic potential energy for a real gas is not equal to zero as there is intermolecular bonding between the molecules. So internal energy is not only dependent on temperature.	1		
	(b)	$p = \frac{1}{3}\rho\langle c^2\rangle = \frac{1}{3}\frac{M}{V}\langle c^2\rangle$, where M = total mass of the ideal gas V = total volume of the ideal gas $\frac{3}{2}pV = \frac{1}{2}M\langle c^2\rangle$	1		
		$\frac{3}{2}nRT = \frac{1}{2}M\langle c^2 \rangle$ = Total KE of gas	1		
		Since internal energy, $U = \text{total KE of ideal gas}$, as PE of ideal gas = 0	1		
		∴ U ∞ T			

4	(a)	(i)	pV = NkT			
7	(a)	(1)	$(2.5 \times 10^{5}) \times (3.8 \times 10^{-2}) = N \times (1.38 \times 10^{-23}) \times (181 + 273)$	1		
			$N = 1.5 \times 10^{24}$	1		
			74 = 1.5 ** 10			
		(ii)	From first law of thermodynamics, increase in internal energy = heat energy supplied + work done on the system			
			Since the process took place at constant volume, work done = 0	1		
			Thus, increase in internal energy = 2700 + 0 = 2700 J	1		
			(Since it is an increase in the internal energy, the change in internal energy is positive 2700 J)			
	(b)		$\Delta E_{K} = 3/2 N k (\Delta T)$			
	, ,		$2700 = 3/2 (1.5 \times 10^{24}) (1.38 \times 10^{-23}) \times \Delta T$	1		
			$\Delta T = 87$			
			T = 181 + 273 + 87 = 541 K	1		
5	(a)	(i)	Given $I = nAve$,			
			since <i>I</i> , <i>n</i> , <i>e</i> are the same for cross-sections X and Y,			
			$\frac{v_{Y}}{v_{X}} = \frac{A_{X}}{A_{Y}} = \frac{\pi d_{X}^{2} / 4}{\pi d_{Y}^{2} / 4} = \frac{d_{X}^{2}}{d_{Y}^{2}}$	1		
			$=(\frac{d}{0.72d})^2 = 1.93$	1		
		(ii)	$R = \frac{\rho l}{A} = \frac{(1.12 \times 10^{-6})(4 \times 10^{-3})}{\pi (\frac{(0.72 \times 0.21 \times 10^{-3})^2}{4})}$	1		
			=0.250 Ω	1		

	(iii)	When the cross-sectional area is smaller, its <u>resistance</u> per unit length <u>is larger</u> .	
		With the same current through entire wire,	1
		the voltage per unit length of the damaged part is larger.	
(b)	(i)	$I_1 + I_3 = I_2$	1
	(ii)	p.d. across BJ of wire changes	1
		so there is a difference between the p.d across wire points BJ and p.d. across cell E	1
	(iii)	$V_{BF} = \frac{R_2}{R_1 + R_2 + r_1} \times E_1 = \frac{3.5}{3.0 + 3.5 + 1.5} \times 4.5 = 1.96875 \text{ V}$ $\frac{l_{BJ}}{l_{BF}} = \frac{E_2}{V_{BF}} \Rightarrow l_{BJ} = \frac{E_2}{V_{BF}} \times l_{BF} = \frac{1.2}{1.96875} \times 1.0 = 0.610 \text{ m}$	1
		$l_{BJ} = \frac{E_2}{E_2} \Rightarrow l_{BJ} = \frac{E_2}{E_2} \times l_{BS} = \frac{1.2}{E_2} \times 1.0 = 0.610 \text{ m}$	1
		$l_{\rm BF}$ $V_{\rm BF}$ $V_{\rm BF}$ 1.96875	

6	(a)	Faraday's law of electromagnetic induction states that the magnitude of the induced e.m.f. <i>E</i> is directly proportional to the rate of change of the magnetic flux linkage.		1
	(b)	(i)	Rate of increase in area of loop ABDCA $= [3-(-5)] \times 0.15 = 1.2 \text{ m}^2 \text{ s}^{-1}$ Induced e.m.f. $= \frac{d\phi}{dt} = (0.20)(1.2)$ $= 0.24 \text{ V}$ Alternatively, $\epsilon = Blv_{AB} + Blv_{CD}$ $= 0.20(0.15)(3) + 0.20(0.15)(5)$ $= 0.24 \text{ V}$	1 1 1
		(ii)	[The magnetic flux ϕ = BA .] Since the area of the loop is increasing, the magnetic flux is increasing. By Lenz's law, the induced current in the loop will create a magnetic field that is acting out of the paper to oppose the increasing flux. By the right hand grip rule, the induced current will flow in the anti-clockwise direction of ABDCA (Cannot use Fleming's Right Hand Rule as an explanation in this case as question specifies using Lenz's law.)	1
		(iii)	By Fleming's Left Hand rule, the induced current will lead to a magnetic force that is in opposite direction to the velocity of the rods. This will cause the rod to slow down.	1

			5	
			In order to keep the speed constant such that the net force is zero, an external force (equal and opposite) is required to counter the magnetic force.	1
7	(a)	1.	The existence of a threshold (minimum) frequency below which no photoelectrons are emitted no matter how intense the EM radiation is.	1
		2.	Above the threshold frequency, the <u>maximum kinetic energy of the photoelectron (stopping potential) increases with the frequency and is independent of the intensity.</u>	1
		3.	There is no appreciable time delay between the incident EM radiation and the emission of photoelectrons even for very low EM intensities.	1
	(b)	(i)	Work function energy refers to the minimum energy required to liberate an electron (escape) from the metal surface.	1
		(ii)	Photon energy = $\frac{hc}{\lambda}$ $ \frac{(6.63 \times 10^{-34})(3.00 \times 10^{8})}{380 \times 10^{-9}} $ = 5.23×10^{-19}	1
			= 3.27 eV	1
		(iii)	Sodium and calcium (both must be listed) (allow ecf) The incident photon has energy greater than their work function energies	1
	(c)	<pre>p =</pre>	n de Broglie's equation, $p = \frac{h}{\lambda}$ $\frac{6.63 \times 10^{-34}}{380 \times 10^{-9}}$ $1.74 \times 10^{-27} \text{ N s}$ n Newton's 2^{nd} law $\frac{\Delta p_{\text{total}}}{\Delta t} = \frac{N}{t} \Delta p$ e of photons incident on metal)(change in momentum for one photon) $(7.6 \times 10^{14})(1.74 \times 10^{-27})$	1
			4.0 4.0-12. N.I.	4

= $1.3 \times 10^{-12} \text{ N}$

8	(a)		π radians	1
	(b)	(i)	Award 1 mark for each correct path.	2
	(b)	(ii)	Resultant displacement/amplitude is the vector sum of the resultant displacement/amplitude of the waves. (It is "considering", hence, do not need to be too strict on the words) The two waves reaching the receiver have different amplitude/energy/power/intensity. Because (any one of the possible reasons) 1. the distance travelled by the two waves are different. 2. some energy is absorbed upon reflection. Hence no complete cancellation / resultant displacement/amplitude is not zero.	1 1
	(c)	(i)	Measure the distance of the two ends of plate M And adjust (make sure) plate M such that the two ends are equidistant from the marked line. OR Use a set square to align a ruler to be perpendicular to the reference line. Move the set square along the ruler to align plate M at the new position.	1

(ii) Recognising the path difference

Path difference = 2z - y

1 mark to recognise the path difference

1

$$=2\sqrt{x^2+(\frac{y}{2})^2}-y$$

1 mark to be able to write the equation in terms of the hypothenuse of the triangle

1

$$=\sqrt{4x^2+(y)^2}-y$$

1

Since there is a <u>phase change at the surface</u>, for <u>destructive interference</u> Path difference = $n\lambda$

1 mark to explain why path difference is equated to $n\lambda$

	(v)	$\Delta \lambda = G_{\text{max}} - \lambda_{\text{ave}} = 0.36 \times 10^{-2}$		1
		Percentage uncertainty in $\lambda = \frac{\Delta}{\Box} \times 100$		
		=	= 12.6 %	1
		Allow ECF		
(e)		y = kx		
		$4.5 = k_1 (2.9)$ $22.3 = k_2 ($	5.8) $55.5 = k_3 (9.0)$ $99.5 = k_4 (12.0)$	1
		$k_1 = 1.5$ $k_2 = 3.8$	$k_3 = 6.1$ $k_4 = 8.29$	
		Conclusion: Since the <i>k</i> v proportional to <i>x</i> .	alues are significantly different, y is not	1
		(1 mark for showing at least t	wo <i>k</i> values with correct calculation	
		1 mark for conclusion)		
(f)		Because the wave reflecting from plate M will not reach the receiver.		
		Hence, there will not be any superposition of the waves at the receiver.		
		Or if student mentioned about the second mark.	at angle of incidence = angle of reflection for	