Upper Secondary Pure Chemistry

```
1. Formula of ions
```

⁴ Group 1 km $3 : + (Na^{+}, k^{-})$ ⁴ Group 2 ions : 2 + (Mg¹⁺, Ca²⁺) ⁴ Group 13 ions : 3 + (Al³⁺) ⁴ Group 15 km $3 : 3 - (N^{3+})$ ⁴ Group 16 ions : 2 - (O²⁺) ⁴ Group 17 ions : - (F⁺, CA⁺, I⁺, Br⁺) unithate - NO3" sultate - SO4" catanate - CO3" amponum - NH4" hydroxide - OH

" Roman numerals ~ only positive charge (iron (I) - Fer)

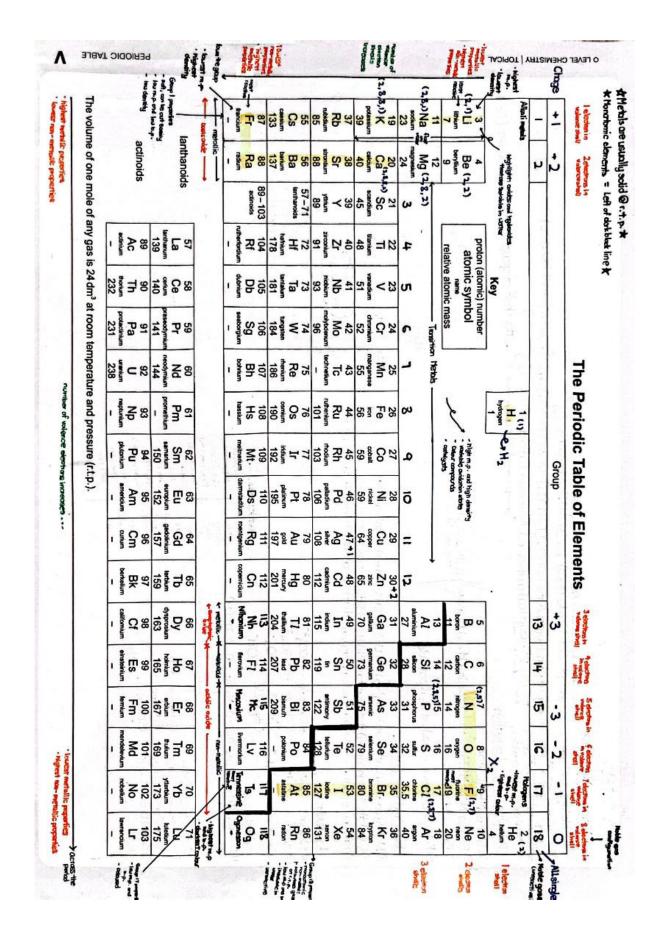
2. Diatomic famulas (X.)

$$H = N = F$$

$$C_{4} \Rightarrow H_{2}, N_{2}, O_{2}, F_{3} \dots = t_{C}$$

$$B_{r}$$

- 3. Solubility table.
 - all nitiates ae soluble
 - all chbides as solube except Ager and Pb Cl2 (indide solubility same)
- all sulfates are soluble except BaSO., CaSO. , PbSO.
- all carbonates insouble except group 1 and ammonium
- all metal oxides I hydroxides are insoluble except



- 4. Inic Equations (A) Facill add + alkali reactions
 - H⁺ (aq) + OH⁻ (aq) → H₂ O (1) (b) For predictate, all ang but 1 s product Write familia of solid on RHS, List backwords to see what ime on LHS
- 5. Colous of compaunds and QA cartions, mians test. - test for contron table (esp white procipitate)
 - " test far onion table

Substance & State	Colour
copper metal, Cu (s)	pint
copper(1) oxide, CuO (a)	block .
adober (I) carponate, ca co3 (?)	green
copper (1) micate, Cu(NC1), (aa)	
(0 pp (11) suifate, CoSO4 (=9)	blue
Copper (11) hydracide, Cu(Orr), (5)	
apper (3) chloride, CuCla (uq)	green
itan metal, re(2)	arey
iran (II) hydracide, Fe (Orl), (1)	dirty grown
iron (IIL) solutions	(pale) green

Tern (20) solutions Routine gas, F2 (9) Chlatine gas, Cl ₂ (9)	Yellow green
	green
Chlorine gas, Cl 2 (g)	a summer of the summer
	Suesoich-Veller
Branine liquid, Bra(1)	reddich-boun
Lodine solid, I, (1)	(publish -) black
Isdine aquecus, I, (aq)	boun
Induce vopcur, I 2 (3)	violet / Purpe
	volet (Purpe

Colour	Example	Remarks
	Oxygen O ₂ (g) Water vapour H ₂ O	except balogens:
Colourless gas	Hydrogen H ₂ (g) Ammonia NH ₄ (g)	F ₂ (g)—pale yellow, Cl ₂ (g)—greenish-yellow,
	Nitrogen N ₂ (g) Sulfur dioxide SO ₂ (g), etc Br ₂ (g) —reddish-brown, l ₂ (g)—purple] [except NO ₂ (g)—brown]
	All Group I compounds (NaCl, Na ₂ CO ₂ , K ₂ SO ₄ , KNO ₂ , KI, etc) Group II compounds that are soluble in water (MgSO ₄ , Mg(N Group III compounds that are soluble in water (Al ₂ (SO ₄) ₂ , Al	(O ₃), CaCl ₂ , etc) Compounds of <u>all main group</u> metals
	Silver compounds that are soluble	Compounds of some transition metals
Colourless	Zinc compounds that are soluble	(others: coloured compounds)
Solution (aq)	All ammonium compounds	
	All acids solutions	
	All alkalis solutions	
	Hydrogen peroxide H ₂ O ₂	
	Mn ²⁺ (aq)	Redox reaction (purple \rightarrow colourless)
	All Group I, II, III compounds	
White		
(solid)	Most silver compounds (AgCl, Ag,O, Ag,CO,, etc) Most zinc compounds (ZnCl ₂ , ZnCO ₃ , ZnSO ₄ , Zn(OH) ₂ , etc)	[except Agl (s)—pale yellow] [except ZnO(s)—yellow when hot, white when cold]
	Most zinc compounds (zncl ₂ , zncO ₃ , znsO ₄ , zn(OH) ₂ , etc)	[except zno(s]—yellow when not, white when cold]
	Most transition metal oxides: Iron(III) oxide Fe ₂ O	(s) Note:
	Copper(II) oxide CuO (s) Manganese(IV) oxid Iron(II) oxide FeO (s)	EarDy - Dart of Iron ora, baematite
Black	Some non-metal elements: Iodine crystals I ₂ (s) Astatine crystals At, (s)	
	All metal elements:	[except Au (s)—gold]
Grey/ Silver	K, Na, Ca, Mg, Al, Zn, Fe, Sn, Pb, Ag, etc	[except Cu (s)—pink (fresh), reddish-brown]
Blue	Copper(II) sulfate CuSO ₄ (s, aq) Copper(II) nitrate Cu(NO ₃) ₂ (s, aq) Copper(II) chloride CuCls (s, aq)—blue-green Copper(II) hydroxide Cu(OH) ₂ (s)—cation test	Most copper(II) compounds
	Anhydrous cobalt(II) chloride CoCl ₂ (s)	Test for water, turns pink when moist
	Iron(II) chloride FeCl ₂ (s, eq) Iron(II) sulfate FeSO ₈ (s, eq) Iron(II) hydroxide Fe(OH) ₂ (s) dirty-green, cation test	Most Iron(II) compounds
Green	Nickel(II) chloride NiCl ₂ (s, aq) Nickel(II) sulfate NiSO4 (s, aq), etc	Most nickel(II) compounds
	Copper(II) carbonate CuCO ₅ (s)	
Greenish Yellow	Chlorine Cl ₂ (g)	
Yellow	Lead(II) iodide Pbl ₂ (s) Silver iodide AgI (s) anion test	
Orange/Yellow	iron(iii) chloride FeCl ₃ (s, aq) iron(iii) sulfate Fe ₂ (SO ₄), (s, aq)	Most Iron(III) compound, Orange/yellow colour depends on concentration
	Copper Cu (s)	Pink when fresh
Reddish Brown	Iron (III) hydroxide Fe(OH) ₃ (s) cation test Rust, hydrated Iron (III) oxIde Fe ₂ O ₃ .xH ₂ O (s)	
	Bromine Br ₂ (aq, I)	
Brown	Indine solution I_2 (eq)	
	Nitrogen dioxide NO ₂ (g)	
Purple	Potassium manganate(VII) KMnO ₄ (s, aq)	Oxidizing agent

" All Metal oxides / hydroxides, O >- 10H" are insoluble except group 1 oxides / hydroxides and bottom half of group 2 oxides / hydroxides (Ca. J.) OZincion → Zn3+ (BAII Sulfates, SO, " are soluble except calcumsulfate (Caso,), Lead (II) sulfate (PbSO,) and Banum Sulfate (BaSO,) (Pholes, C2. are soluble except sherchloride (Agc2) and lead (II) chloride (Pbc2.) @Ammoniumion - NH4 O Silverion - Agt ⊕ Balance O atoms → adjust O₂ if passible 3 Balance Hatams @ Balance NON-METALS atoms, excluding H and O atoms **OBolarce METAL atoms** (14) Catorates, CO3, "are insoluble except group I catorates and Ammonium catorate ((14), 202) OAII Nithates, NO3" are soluble OAmmonia - NH3 Tom issue aquation - remaining iss in a compared that is unconselled (remember to put chage) Oldertify compounds which are in 'oq' an both LHS and RHS of the chemical equation O Caroel the same jars in (aq) that appear on both LHS and RHS --- spectato ions 3 Caton Monovide --- co O Corbon Diavide - Co. HC2 (aq) , HNO, (aq) , H, SO, (aq) , NOH (aq) , KOH (aq) Outer Isteam - Hao -**Asidel Altalis** Tomulas to memories Loro to memorise boloncing ionic equation Solubility table Balancing chemical equation 2 OHydraide → OH-@Nihote - NO3-Carbonate - CO32-OEthone - CaHy @Ethone - CaHe Henne - CH4 i Double check LHS and RHS to ansure bolonce Me 17 ş ĩ > ŧŞ 5 Potensium (K) (Hydrogen)(H Gold (Ru) Australian (Pg) Silver (ng) Copper (cu) Load (Pb) Im (Fe) aldium (Ca) aliam (Pt) Lino (2m) othen (o) adium (No) (Bldm3) 80 Mole (e) Moss (day I volume 국 Mole famulas (mole/dm3) (dm2) 9 Ę Mole VOUT (and) Buro soo 2404

6092 CHEMISTRY GCE ORDINARY LEVEL SYLLABUS

NOTES FOR QUALITATIVE ANALYSIS

Test for anions

anion	test	test result
carbonate (CO32-)	add dilute acid	effervescence, carbon dioxide produced
chloride (C <i>l</i> ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
iodide (I⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	yellow ppt.
nitrate (NO₃⁻) [in solution]	add aqueous sodium hydroxide, then aluminium foil; warm carefully	ammonia produced
sulfate (SO₄²-) [in solution]	acidify with dilute nitric acid, then add aqueous barium nitrate	white ppt.

Test for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
aluminium (A <i>l</i> ³⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., insoluble in excess
ammonium (NH₄⁺)	ammonia produced on warming	-
calcium (Ca ²⁺)	white ppt., insoluble in excess	no ppt.
copper(II) (Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc (Zn ²⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess giving a colourless solution

Test for gases

gas	test and test result
ammonia (NH₃)	turns damp red litmus paper blue
carbon dioxide (CO ₂)	gives white ppt. with limewater (ppt. dissolves with excess CO ₂)
chlorine (Cl ₂)	bleaches damp litmus paper
hydrogen (H ₂)	'pops' with a lighted splint
oxygen (O ₂)	relights a glowing splint
sulfur dioxide (SO ₂)	turns aqueous acidified potassium manganate(VII) from purple to colourless

Chapter 1: Experimental Chemistry

Apparatus	Pipette	Measures accurate fixed volumes (e.g. 10.0cm ³ or 25.0cm ³) – 1 d.p.
	Volumetric Flask	Measures accurate fixed volumes that are larger (e.g. $100 \text{ cm}^3 \text{ or } 250 \text{ cm}^3$)
	Measuring Cylinder	Measures a range of volumes to the nearest 0.5 cm ³ (e.g. 31.5 cm ³ or 23.0 cm ³)
	Burette	Measures a range of volumes to the nearest 0.05 cm ³ (e.g. 31.55 cm ³ or 23.00 cm ³) – most accurate (when 2 dp value, usually burette)
Collection Method	Water Displacement	Gas must be insoluble/slightly soluble in water (e.g. Hydrogen, Oxygen, Carbon Dioxide)
	Downward Delivery	Gas must be denser than air – Mr/Ar > 28 (e.g. chlorine, hydrogen chloride, sulfur dioxide)
	Upward Delivery	Gas must be less dense than air – Mr/Ar < 28 (e.g. Ammonia, helium, hydrogen) gas gas jar delivery tube gas
Drying Agent	Concentrated Sulfuric Acid	Most gases except basic gas (e.g. ammonia)
	Quicklime (Calcium Oxide)	Gases (ammonia can be dried here) except acidic gases (e.g. Sulfur Dioxide, Carbon Dioxide, Nitrogen Dioxide, Chlorine, Hydrogen Chlorine)
	Fused Calcium Chloride	Gases except those who react with Calcium Chloride (e.g. Ammonia) → must be freshly heated before use

Separation of Mixtures	Magnetic Attraction	A magnet can be used to separate magnetic solids from non- magnetic solids (Solid – Solid)
	Sieving	A sieve can be used to separate solids of different particle sizes (Solid – Solid)
	Suitable Solvents	A suitable solvent can be used to separate solid-solid mixtures in which only one of the solids is soluble in the solvent (Solid – Solid)
	Sublimation	Sublimation can be used to separate a substance that changes from the solid to gaseous state directly (Solid – Solid) (e.g. pure iodine, dry ice)
	Filtration	Filtration can be used to separate insoluble solids from liquids (Solid – Liquid)
	Evaporation to Dryness	Evaporation to dryness is used to separate a dissolved solid from its solvent by heating the mixture until all the solvent has vapourised (Solid – Liquid) (O levels, only have NaCl)
	Crystallisation	Crystallisation is used to obtain a pure solid from its saturated solution. A saturated solution is one in which no more solute can be dissolved (Solid – Liquid)
		This method is used instead of evaporation to dryness to prevent the crystals from losing its water of crystallization and becoming anhydrous
	Simple distillation	Simple distillation is used to separate a pure solvent from a solution (Solid – Liquid)
		Why bulb of thermometer at entrance of condenser? $ ightarrow$ To record the boiling point of vapour collected
		Why water in this direction (condenser)? \rightarrow To ensure condenser is fully filled with water and allows efficient cooling of vapour
	Separating Funnel	A separating funnel is used to separate immiscible liquids (Liquid – Liquid) (immiscible = different density)

	Chromatography	Chromatography is used to separate a mixture of substances which have different solubilities in a given solvent Why start line in pencil? \rightarrow Graphite is insoluble in all solvents and will not be separated together with the samples Why start line not in ink? \rightarrow Ink is a mixture and dyes will be separated along with the sample R_f value = $\frac{distance\ travelled\ by\ the\ solvent}{distance\ travelled\ by\ the\ solvent} \leq 1$ (no units, 2d.p)
	Fractional distillation	Fractional distillation is used to separate miscible liquids with different boiling points
Purity of a s	ubstance	A pure substance has a specific melting and/or boiling point under fixed conditions (impure substances melt/boil at a range of temperatures)

Chapter 2: Kinetic Particle Theory

Kinetic Parti	icle Theory	The kinetic particle the particles and these particles and the particles and			• •
Solid, Liquid	l and Gas				
		Table 2.1 Summary of the differences betw	solids, liquids	Liquid	Gas
		State of Matter Particle Arrangement	very closely packed in an orderly manner	closely packed in a disorderly manner	very far apart in a disorderly manner
		Attractive Forces Between Particles	very strong	less strong	very weak
		Kinetic Energy of Particles	very low	low	high
		Particle Movement	vibrate and rotate about fixed positions	slide past one another freely throughout the liquid	move quickly and randomly in any direction
		Shape	definite	indefinite	indefinite
		Volume	definite	definite	indefinite
		Compressibility	no - herei	no	yes
		What happens when in increases and melting temperatures) (substa	point decreas	es (both occurs	at a range of
Diffusion	Definition	Diffusion is the <u>net</u> mc concentration to a reg			egion of higher
	Conditions that affect R.O.D	Temperature \rightarrow highe ROD Mr \rightarrow higher Mr = hea			t increase, highei

Chapter 3: Atomic Structure

Atoms	Definition	An atom is the smallest particle that can still have the chemical characteristics of an element		
Charges		Atoms are electrically neutral (charge = 0) Number of protons in an atom = number of electrons in that atom		
	Sub-atomic particles	Sub-atomic Sub-atomic Relative Mass		
		Particle Interactive mass Interactive charge Atom proton 1 sume +1 nucleus neutron 1 sume 0 nucleus electron 1/(1840) -1 electron shell → sumonding University the priority (P) ordinautor(N) the priority		
Sub-atomic particles	Proton number	The Proton Number of an atom is the number of protons in its nucleus of an atom.		
	Nucleon number	The nucleon number is the total number of protons and neutrons in the nucleus of an atom		
lons	L	An ion is the particle formed when an atom or a group of atoms gains or loses electron(s), but the number of protons and neutrons remains the same		
lsotopes		Isotopes are <u>atoms</u> of the same element that have the same proton number but different nucleon number. This means they have different number of neutrons.		
Electrons	Electronic configuration	2,8,8,18 outermost electron shell = valence shell electrons in outermost electron = valence electrons		

Chapter 4: Chemical Bonding

lons	Positive ions (cations)	Positive ions (cations) have a net positive charge and usually have a noble gas electronic configuration
	Negative ions (anions)	Negative ions (anions) have a net negative charge and have a noble gas electronic configuration
lonic bonding	Ionic bond	An ionic bond is the mutual electrostatic attraction between ions of opposite charges (cation and anion)
	Ionic structures	A giant ionic crystal lattice is a three-dimensional structure of alternating positive and negative ions along the x, y and z axis
Covalent bonding	Valency (Covalent bond)	Valency refers to the number of electron(s) that must be lost, gained or shared in order for the atom to attain a noble gas electronic configuration
Metallic bonding	Metallic bond	The metallic bond is the mutual electrostatic attraction between positively charged ions in a metal and the "sea of delocalised electrons) (cation and electron)

Chapter 5: Structure and Properties of material

EMC		Table 5.1 Comparison	between elements,	compounds and mixtures	
		·	Element	Compound	Mixture
		What Is It Made Of?	only one element	two or more elements that are chemically combined	two or more elements and/ or compounds that are not chemically combined
		How Is It Formed?	mostly naturally occurring	from a chemical reaction	usually from physical mixing
		What Is the Ratio of Its Constituents?	-	fixed ratio	no fixed ratio
		What Are Its Properties Like?	-	has different properties from its constituent elements	usually has similar properties to its constituent substances
		Melting and Boiling Points	fixed	fixed	melt and boil over a range of temperatures
Properties	lonic	 Giant ionic crystal lattice structure → strong electrostatic forces of attraction High Melting point, High Boiling Point → overcome strong electrostatic forces of attraction between (cation) and (anion) Hard Soluble in water, insoluble in organic solvents Conducts electricity in molten/liquid and aqueous states (mobile ions). Does not conduct electricity in solid (held in fixed position) 			

	Simple Covalent / Simple molecular	 Covalent bonds → weak intermolecular forces of attraction Low melting point, Low boiling point → overcome weak intermolecular forces of attraction between molecules Insoluble in water, Soluble in organic solvents Does not conduct electricity in any state
	Giant covalent	 Tetrahedral arrangement (1 carbon atom is covalently bonded to four other carbon atoms) – Diamond, layered arrangement (1 carbon atom is covalently bonded to three other carbon atoms) – Graphite → break strong covalent bonds between atoms Diamond is hard, Graphite is soft and slippery Both have high boiling and melting point Insoluble in water and insoluble in organic solvents
	Macromolecules	 Many covalent molecules joined into chains to form a larger molecule → overcome weak intermolecular forces of attraction High melting and High boiling point (melts over a range of temperatures) Insoluble in water and soluble in organic solvents Not able to conduct electricity in any states
	Metals and Alloys	 Giant metallic lattice → lattice of strong metallic bonds Pure metals are malleable and ductile Alloys are harder and stronger than pure metals High melting and boiling point Both are good electrical conductors in any state → "sea of delocalized electrons"
Allotropes	<u> </u>	Different forms of the <u>same element</u> with different structural arrangement of atoms
Alloys		A mixture of a metal with one or more other elements (other elements can be non-metal)

Balancing chemical equations	1. Balance Metal atoms
	2. Balance Non-Metal atoms, excluding H and O atoms
	3. Balance H atoms
	4. Balance O atoms \rightarrow adjust O ₂ if possible
Forming Ionic equations	1. Identify compounds which are in "aq" on both LHS and RHS of
	the chemical equation
	2. Cancel the same ions in (aq) that appear on both LHS and RHS $ ightarrow$
	spectator ions
	3. From ionic equation $ ightarrow$ remaining ions in aq compound that is
	uncancelled

Chapter 7: Mole concept and Stoichiometry

In a lid Al Relative Atolinc Interference atolinc mass (A) of an element relative site average mass of or carbon - 12. Relative Relative molecular mass (M.) of a molecular substance is the average mass of an atom of carbon - 12. Relative Formula The relative molecular mass (M.) of a molecular substance is the average mass of an atom of carbon - 12. Mole One mole of any substance will always contain 6.02 x 10 ²³ particles of that substance. The particles can be atoms, molecules, ions and even sub-atomic particles such as electrons. Mole One mole of any substance has a mass equal to its relative atomic mass (A), relative molecular mass or relative formula mass (M.) in grams. Concentration The concentration of a solution is the amount of a solute dissolved in a unit volume of the solvent Formulas Most important) Most important) Met formulas Most important) Met formula Empirical formula Interference (Most important) Met formulas Most important) Met formulas Most important) Interference Most important) Interference Mole in a unit volume of the solvent Interference Formulas Interference (Most important) Interference Mole in the formula Int	Mr and Ar	Relative Atomic	The relative atomic mass (A _r) of an element is the average mass of
(definition not important) Relative molecular mass The relative molecular mass (M,) of a molecular substance is the average mass of one molecule of that substance to $\frac{1}{12}$ the mass of an atom of carbon – 12. Relative Formula Mass The relative formula mass (M,) of an ionic compound is the average mass of one unit of that compound relative to $\frac{1}{12}$ the mass of an atom of carbon – 12. Mole calculations Mole One mole of any substance will always contain 6.02 x 10 ²³ particles of that substance. The particles can be atoms, molecules, ions and even sub-atomic particles such as electrons. Molar mass One mole of any substance has a mass equal to its relative atomic mass (A,), relative molecular mass or relative formula mass (M,) in grams. Concentration The concentration of a solution is the amount of a solute dissolved in a unit volume of the solvent Formulas Most important) Most important) Image: molecular mass or relative formula mass (M, in grams. Empirical formula Image: molecular mass or relative formula mass (M, in grams. Important) Image: molecular mass or relative formula mass (M, in grams. Important) Image: molecular mass or relative formula mass (M, in grams. Important) Image: molecular mass or relative formula mass (M, in grams. Image: molecular mass (Molecular mass (Molecular mass or relative formula mass (M, in grams. Image: molecular mass (M, in grams. Image			
Interfeative indicution indication indication substance to a indication substance to a indication inditeration indication indication indication indication indication i	not		
Image: Index of one indeceded of thick substance to $\frac{1}{12}$ the index of an atom of carbon – 12. Relative Formula The relative formula mass (M,) of an ionic compound is the average mass of one unit of that compound relative to $\frac{1}{12}$ the mass of an atom of carbon – 12. Mole One mole of any substance will always contain 6.02 x 10 ²³ particles of that substance. The particles can be atoms, molecules, ions and even sub-atomic particles such as electrons. Molar mass One mole of any substance has a mass equal to its relative atomic mass (A _i), relative molecular mass or relative formula mass (M _i) in grams. Concentration The concentration of a solution is the amount of a solute dissolved in a unit volume of the solvent Formulas Mole formulas (Most important) Mole formulas Most important Mole formulas (Most important) Mole formulas Important Important Most important Mole formed formula Important Important Important Important	important)		The relative molecular mass (M _r) of a molecular substance is the
Relative Formula The relative formula mass (M,) of an ionic compound is the average mass of one unit of that compound relative to $\frac{1}{12}$ the mass of an atom of carbon – 12. Mole calculations Mole One mole of any substance will always contain 6.02 x 10 ²³ particles of that substance. The particles can be atoms, molecules, ions and even sub-atomic particles such as electrons. Molar mass One mole of any substance has a mass equal to its relative atomic mass (A,), relative molecular mass or relative formula mass (M,) in grams. Concentration The concentration of a solution is the amount of a solute dissolved in a unit volume of the solvent Formulas Mole the formulas (Most important) Mole the formulas Kost important) Mole the formula mass (M, in grams in a unit volume of roles in a unit volume of the solvent Formulas Mole the formulas (Most important) Most important) Mole the formula in the formula mass (M, in grams in a unit volume of roles in a unit volume of roles in a unit volume of the solvent Empirical formula Most important) Mole the formulas in a unit volume in the average of index in a unit volume in the average of index in a unit volume in the average of index in average index in average in average index in aver		Molecular Mass	average mass of one molecule of that substance to $\frac{1}{12}$ the mass of
Mass average mass of one unit of that compound relative to $\frac{1}{12}$ the mass of an atom of carbon – 12. Mole One mole of any substance will always contain 6.02 x 10 ²³ particles of that substance. The particles can be atoms, molecules, ions and even sub-atomic particles such as electrons. Molar mass One mole of any substance has a mass equal to its relative atomic mass (Ar), relative molecular mass or relative formula mass (Mr) in grams. Concentration The concentration of a solution is the amount of a solute dissolved in a unit volume of the solvent Formulas Most important) Most important) Methods Most important Methods			an atom of carbon – 12.
Mole One mole of any substance will always contain 6.02 x 10 ²³ particles of that substance. The particles can be atoms, molecules, ions and even sub-atomic particles such as electrons. Mole One mole of any substance has a mass equal to its relative atomic mass (Ar,), relative molecular mass or relative formula mass (Mr) in grams. Concentration The concentration of a solution is the amount of a solute dissolved in a unit volume of the solvent Formulas Most important) Most important) Mele formulas Most important) Mele formula Most important) Mele formula Most important) Mele formulas Mele		Relative Formula	The relative formula mass (M _r) of an ionic compound is the
Mole calculations Mole One mole of any substance will always contain 6.02 x 10 ²³ particles of that substance. The particles can be atoms, molecules, ions and even sub-atomic particles such as electrons. Molar mass One mole of any substance has a mass equal to its relative atomic mass (A-), relative molecular mass or relative formula mass (M-) in grams. Concentration The concentration of a solution is the amount of a solute dissolved in a unit volume of the solvent Formulas Mole formulas (Most important) Mel formula (Most important) Mel formula <		Mass	average mass of one unit of that compound relative to $\frac{1}{12}$ the mass
calculations of that substance. The particles can be atoms, molecules, ions and even sub-atomic particles such as electrons. Molar mass One mole of any substance has a mass equal to its relative atomic mass (Ar), relative molecular mass or relative formula mass (Mr) in grams. Concentration The concentration of a solution is the amount of a solute dissolved in a unit volume of the solvent Formulas Molet timportant) Most important) Molet time time time time time time time ti			of an atom of carbon – 12.
even sub-atomic particles such as electrons. Molar mass One mole of any substance has a mass equal to its relative atomic mass (Ar), relative molecular mass or relative formula mass (Mr) in grams. Concentration The concentration of a solution is the amount of a solute dissolved in a unit volume of the solvent Formulas Mole famulas (Most important) Mole famulas Important Mole famulas (Most important) Mole famulas Important Mole famolas Important Important		Mole	
Molar mass One mole of any substance has a mass equal to its relative atomic mass (A,), relative molecular mass or relative formula mass (M,) in grams. Concentration The concentration of a solution is the amount of a solute dissolved in a unit volume of the solvent Formulas Mole formulas (Most important) Mole formulas Important Mole formulas (Most important) Mole formulas Important Mole formulas (Most important) Mole formulas Mole formula Mole formulas (Most important) Mole formulas Mole formula Mole formulas (Most important) Mole formulas Mole formula Mole formulas (Most important) Mole formulas (Most important) Mole formulas (Most important) Mole formula (Most importa	calculations		•
Empirical formula Element X Image formula (Most important) Element X Image formula (Most important) X Image formula Image formula (Most important) Image formula Image formula Image formula (Most important) Image formula Image formula Image formula Image formula (Most important) Image formula Image formula Image formula Image formula (Most important) Image formula Image formula Image formula Image formula (Most important) Image formula Image formula Image formula Image formula Image formula Image formula Image formula Image formula Image formula Image formula Image formula Image formula Image formula Image formula Image formula Image formula Image formula Image formula Image formula			
grams. Concentration The concentration of a solution is the amount of a solute dissolved in a unit volume of the solvent Formulas (Most important) Impirical formula Impirical formula (Most important) Impirical formula		Molar mass	
Concentration The concentration of a solution is the amount of a solute dissolved in a unit volume of the solvent Formulas Mole famulas (Most important) Mole famulas Important Mole famulas (Most important) Mole famulas Important Mole famoulas Important Important Importan			
In a unit volume of the solvent Formulas (Most important) Mole famulas (Most important) Mole Mr M			
Empirical formula (Most important) Empirical formula (Most important) Empirical formula (Most important) Element X / mass Finallest Fina		Concentration	
(Most important) (Most important) Empirical formula (Most important) (Most important) Empirical formula (Most important) (Most important) Element X / mass 			in a unit volume of the solvent
(Most important) (Most important) Hole Hr Hole		Formulas	Mole familia
Image: state of the state o		(Most important)	
Empirical formula (Most important) (Most importa			Mass (g) Volume (ant)
(most important) Image: 17. Image: 17. Image: 17. Image:			Mole Mr Hoje 24.00.1
(most important) Image: 17. Image: 17. Image: 17. Image:			
Empirical formula Element volume (Most important) Images girenin on Ar respiration for table Arof Taben number of moles mass 11% *smallest mole ratio mole ratio rounding from			
(Most important) (Most important) Ar number of moles 			conc volume conc volume
(Most important) X I mass - giren in qn Ar - even if dictomic, take Arof lattern number of moles - mass 1%.	Empirical for	mula	Flement
Inumber of moles mass 1%.	(Most import	tant)	
÷smallest number mole ratio			Ar even if dictomic, take Arof later
mole ratio			
mole ratio			number - py singles - namber of
* smalleet number			Made ratio
			"* smallaet number" /

Chapter 8: Acid and Bases

Acids	Definition	An acid is a substance that produces hydrogen ions, H ⁺ , in aqueous solutions.
	Properties	 1. Acids have a sour taste *2. Acids produce ions (H⁺ ion and anion) when dissolved in water. These ions are mobile and can act as mobile charge carries to allow the resulting aqueous solution to conduct electricity. *3. Acids turn blue litmus paper red (litmus paper MOIST)
	Acid reactions	Metal + acid → salt + hydrogen gas (not all metals are reactive – copper, platinum, LEAD APPEARS UNREACTIVE)
		Base + Acid \rightarrow salt + water (neutralisation) Carbonate + Acid \rightarrow salt + water + carbon dioxide
	Strong vs weak acid	Strength refers to the extent of ionisation of an acid, when dissolved in water
		A strong acid is an acid that is completely ionized in an aqueous solution (e.g. HCl, H_2SO_4 , HNO_3 – only three in syllabus)
		A weak acid is an acid that is only partially ionized in an aqueous solution (e.g. CH ₃ COOH, carboxylic acids)

Base	Definition	A base is any metal oxide or hydroxide. They contain either the oxide ion (O^{2-}) or the hydroxide ion (OH^{-})
	Base reactions	Base + Acid \rightarrow salt + water (neutralisation)
Alkalis	Definition	Alkalis are bases that are soluble in water that produces hydroxide ions, OH ⁻ , in aqueous solutions.
	Strong vs weak alkali	Strength refers to the extent of ionisation of an alkali, when dissolved in water
		A strong alkali is an alkali that is completely ionised in an aqueous solution (e.g. NaOH)
		A weak alkali is an alkali that is only partially ionised in an aqueous solution (e.g. NH_3)
	Properties	 Alkalis taste bitter Alkalis feel slippery and soapy *3. Alkalis dissolve in water to form solutions that contain mobile ions which conduct electricity (have OH⁻ ions + cations) *4. Alkalis turn red litmus paper blue (litmus paper MOIST)
	Alkali reactions	Alkali + Acid \rightarrow Salt + Water (14neutralization)
		Alkali + Ammonium salt $ ightarrow$ salt + water + ammonia gas
		Ammonia gas: If no water present in litmus paper, litmus paper will not change colour. Ammonia remains a molecule and no OH ⁻ ions produced
	"Fertiliser question"	Qn: Fertilisers are usually ammonium salts. Farmers have been advised not to add fertilisers together with calcium oxide/hydroxide. Why?
		Ans: Calcium oxide/hydroxide reacts with ammonium salt to produce ammonia gas that escapes from the soil. Thus less nitrogen for plants to absorb through their roots.

Oxides	Basic Oxides (Metal + O)	Most metal oxides are basic oxides. They are insoluble in water and exist as solids in room temperature. They react with acids to form a salt and water.
	Amphoteric Oxides	Metallic oxides that react with both acid and bases to form salts and water.
		Zinc Oxide Aluminum Oxide Lead (II) Oxide
	Acidic Oxides (Non-metal + O)	Most non-metal oxides are acidic oxides. They are able to dissolve in water to form acids.
		They do not react with acids but react with alkalis to form a salt and water.
	Neutral Oxides	Some non-metal oxides form oxides that show neither basic nor acidic properties.
		Water Carbon Monoxide Nitric oxide

Chapter 9: Salts

Salt		A salt is an ionic compound that consists of a cation and an anion.
Salt preparation methods	Reaction of acid with an insoluble substance	This is when the salt is soluble in water and it is not a group 1/ammonium salt.
		 <u>Steps</u> 1. Add excess (named solid reactant) to a fixed volume of (name acid). Stir. 2. Filter the mixture and collect (named salt) as the filtrate 3. Heat the filtrate until saturated 4. Let the saturated solution cool and crystallise 5. Filter out the crystals, was with a little cold distilled water and press dry with filter paper
	Titration	This is when the salt is soluble in water and it is a group 1/ammonium salt.
		 <u>Steps</u> 1. Pipette 25.0cm³ (can be any value, but reasonable) of (named alkali) into a conical flask and add in a few drops of suitable indicator 2. Add the (named acid) from the burette into the conical flask until the indicator changes colour. Note the volume of acid used. 3. Repeat the titration without the indicator and add in the predetermined volume from step 2. 4. Heat the filtrate until saturated 5. Let the saturated solution cool and crystallise 6. Filter out the crystals, was with a little cold distilled water and press dry with filter paper
	Ionic Precipitation	This is when the salt is insoluble in water (follow solubility table, once insoluble confirm ionic precipitation)
		 <u>Steps</u> 1. Add aqueous (named reactant 1) to aqueous (named reactant 2) 2. , stir 3. Filter the mixture and collect (named salt) as a residue 4. Wash the residue with cold distilled water and press dry with filter paper.