Can	didate Ir	ndex Nu	mber

Anglo - Chinese School (Independent)

FINAL EXAMINATIONS 2013 YEAR 3 INTEGRATED PROGRAMME CORE MATHEMATICS PAPER 1

FRIDAY 4th OCTOBER 2013 1 h 30 min

Additional Material
Graph Paper (1 sheet)

INSTRUCTIONS TO CANDIDATES

- Write your index number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Answer all questions in the spaces provided.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.
- The maximum mark for this paper is 80.

For Examiner's Use

This paper consists of 13 printed pages.

[Turn over

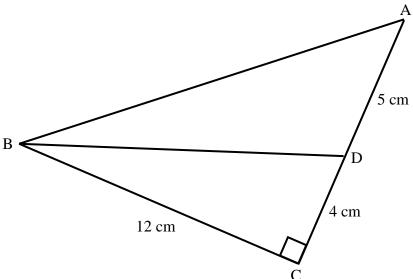
Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Answer all the questions in the spaces provided.

l	[Max	imum mark: 3]	
		buys y erasers at \$0.50 each and $y-4$ pens at \$1.20 each. She wishes than \$40. Form an inequality in y .	s to spend
	(a)	Torm an inequality in y.	[1 mark]
	(b)	Solve the inequality and hence, find the largest possible value of y .	[
			[2 marks]

2	[Maximum	mark.	61
<u> </u>	<i> Maximum</i>	mark:	υį

- (a) (i) Given that $\sqrt{\frac{m-3}{m+5}} = y$, express m in terms of y.
 - (ii) Hence, find the value of m when y = -3.

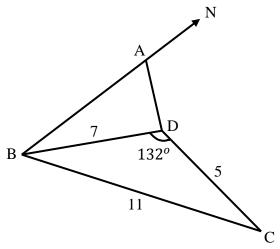

[4 marks]

(b) Simplify and express $\frac{1+\frac{3}{x^2}}{2x+\frac{6}{x}}$ as a single fraction.

[2 n	narks]

3 [Maximum mark: 6]

In the diagram, BC = 12 cm, CD = 4 cm , DA = 5 cm, $\angle ACB = 90^{\circ}$ and ADC is a straight line.


- (a) Calculate AB.
- (b) Write down, as a fraction, the value of
 - (i) $\sin \angle CBD$.
 - (ii) $\cos \angle ADB$.

()				[4 marks]

[2 marks]

4 [Maximum mark: 7]

In the diagram, A, B, C and D are points on level ground. A is north of B. The bearing of D from A is 115° and the bearing of D from B is 25° . $\angle BDC = 132^{\circ}$, BD = 7 m, CD = 5 m and BC = 11 m.

(a) Find the value of $\angle ADB$.

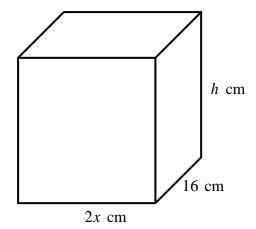
[2 marks]

(b) Find the bearing of C from D.

[2 marks]

(c) Calculate the value of cos132°, leaving your answer in fraction.

[3 marks]

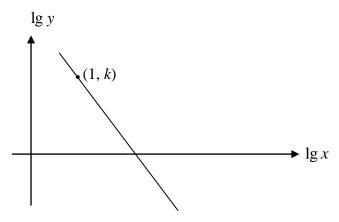

 	• • • • • •	 		 	 	 	
 	•••••	 		 	 	 	
 	•••••	 		 	 	 	
 	•••••	 		 	 	 	
 		 •	• • • • • • • • • • • • • • • • • • • •	 	 	 	
 	•••••	 		 	 	 	
 	•••••	 		 	 	 	

.....

5	[Max	[Maximum mark: 7]						
	Jacol (a)	b bought x calculators, each at the same price, for a total cost of \$258. Write down an expression for the cost of each calculator in terms of x .	mark)					
	(b)	He kept 3 calculators for himself and sold the rest at a profit of \$3 per calculator. Write down an expression, in terms of x , the total amount, in dollars, he received for all the calculators sold.						
	(c)	Given that Jacob made a profit of \$102 altogether, form an equation in x show that it reduces to $x^2 - 37x - 258 = 0$.						
	(d)	Solve the equation in part (c) and hence find the selling price of each calculator.	narks]					
		[3 r	narks]					
			••••					
			• • • • • •					

6 [Maximum mark: 7]

A metal wire, of length 128 cm is to be bent to form the frame of a rectangular box as shown below.



Given that the dimensions of the box are $2x \text{ cm} \times 16 \text{ cm} \times h \text{ cm}$,

(a) (b) (c)	express h in terms of x . express the volume V cm ³ of the box in term of x . hence, by completing the square, find the maximum volume of the box	[2 marks] [2 marks] ox. [3 marks]

7 [Maximum mark: 3]

The diagram below shows the straight line obtained by plotting $\lg y$ against $\lg x$.

Given that $y^2 = \frac{10^3}{x^2}$, calculate the value of k.

[3 mari	KS _j
	•
	•
	-

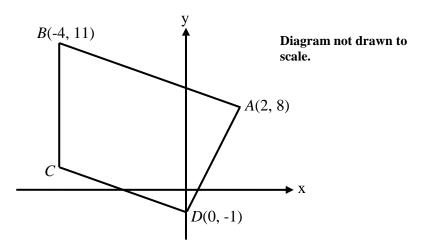
8	[Max	[Maximum mark: 8]							
	Give	en that $\sin A = \frac{2}{5}$ and $90^{\circ} \le A \le 180^{\circ}$, find the value of							
	(a)	$\cos A$,	[2 mayka						
	(b)	tan A,	[2 marks]						
		5 · A 5 /7 A	[2 marks]						
	(c)	$\frac{5\sin A - 5\sqrt{7}\cos A}{2 - \sqrt{7}\tan A}$, leaving your answer in the form a	$a + b\sqrt{3}$ where a and b						
		are constants.	[4 marks]						
	•••••								
	•••••								
	•••••								
	•••••								
	•••••								

9	[Maximum	mark:	91
,	[MI CONTINUITE	man.	/ J

(a) Solve the equation $2^{4x+3} + 7(2^{2x}) = 1$.

[3 marks]

(b) Solve the simultaneous equations


$$\log_8(y^2 + 17) = \frac{1}{3} + \frac{2}{\log_x 8}$$
$$25\left(5^{\frac{y}{2}}\right) = \sqrt{5^x}$$

[6 marks]

(a)	Find the range of values of k for which the curve $y = 4 + 2x + x^2$ meets the line $y - kx = 3$ at two distinct points.							
(b)	Find the least integer value of c for which $x^2 + 6 + 8x + 5c$ is always positive [3 marks]							
••••								

11 [*Maximum mark:* 9]

Solutions to this question by accurate drawing will not be accepted.

ABCD is a trapezium where AB is parallel to CD and BC is parallel to the y-axis. The coordinates of A, B and D are (2, 8), (-4, 11) and (0, -1) respectively. Find

(a)	the equation of AB ,	[2 marks]
(b)	the equation of CD ,	
(c)	the coordinates of C ,	[2 marks]
(d)	the equation of the perpendicular bisector of AB .	[2 marks]
		[3 marks]

12 [*Maximum mark:* 8]

Answer the whole of this question on a sheet of graph paper.

The perimeter, P, in metres, of a rectangle is given by the equation $P = 2x + \frac{24}{x^2} + 3$.

The table of values below is for the curve $P = 2x + \frac{24}{r^2} + 3$.

X	1	2	3	4	5	6	7	8	
P	29.0	13.0	11.7	12.5	14.0	15.7	17.5	19.4	

Using a scale of 2 cm to represent 1 metre on the horizontal axis and 4 cm to represent 4 metres on the vertical axis, draw the graph of $P = 2x + \frac{24}{x^2} + 3$ for values $1 \le x \le 8$ and $10 \le P \le 30$.

[4 marks]

(b) Use your graph to find the minimum perimeter of the rectangle.

[1 marks]

(c) Using the graph, solve the equation $3x + \frac{24}{x^2} - 15 = 0$

[3 marks]

****** END OF PAPER 1 *******