Anderson Serangoon Junior College 2020 H1 Physics Prelim Solution

Paper 1	(30 marks)	
---------	------------	--

1	2	3	4	5	6	7	8	9	10
D	С	А	В	А	А	С	D	С	Α
11	12	13	14	15	16	17	18	19	20
В	D	Α	А	С	С	В	С	В	В
21	22	23	24	25	26	27	28	29	30
D	D	С	В	В	В	D	A	D	С

1	D
	mass of raindrop = ~ 0.05 g
2	C
	density of ruler = $13.78 / (31.2 \times 0.32) = 1.3802 \text{ g cm}^{-3}$
	fractional uncertainty of density = $\frac{0.1}{31.2} + \frac{0.02}{0.32} + \frac{0.01}{13.78} = 0.066$
	percentage uncertainty of density = $0.066 \times 100\% = 6.6\%$
	actual uncertainty of density = $0.066 \times 1.3802 = 0.09 \text{ g cm}^{-3}$
	Hence, density = $1.38 \pm 0.09 \text{ g cm}^{-3}$
3	Α
	velocity of motorcyclist relative to passenger on car, $v_R = \overrightarrow{v_M} - \overrightarrow{v_C} = \overrightarrow{v_M} + (-\overrightarrow{v_C})$
	Hence, answer is A.
4	В
	Area under acceleration time graph represents the change in velocity of the object. Hence, the speed at point B will be greatest.
5	A
	Both stones have the same initial horizontal velocity and hence same final horizontal velocity.
	In the vertical component, both stones experience the same change in displacement (s). Using $v^2 = u^2 + 2as$, the same final vertical velocity will be obtained.
6	Α
	After 1 sec, $s = ut + \frac{1}{2} at^2$ $= 0 + \frac{1}{2} (9.81)(1)^2$ = 4.905 m (equivalent to 2 storeys)

	After 2 sec,
	$s = ut + \frac{1}{2} at^2$
	$= 0 + \frac{1}{2} (9.81)(2)^{2}$ = 10.62 (equivalent to 8 storeus)
	= 19.02 (equivalent to 8 storeys)
	After falling 2s, the ball will be at the 2 nd storey.
7	C
	Action-reaction must be of the same type. Weight is the gravitational force on the man due to the Earth.
8	D
	Since there is no external forces acting along the horizontal direction, COM applies.
9	C
	The impulse is the product of resultant force and time the force acts.
10	Α
	Constant horizontal speed implies no net force in that direction, so the only force is the normal contact force acting upwards.
11	В
	Resultant force is zero in all cases. However, taking moments about the CG, assuming length of the square is d : A will result in a 2Fd – Fd = Fd clockwise moments C will result in 2Fd – Fd = Fd anticlockwise moments & D will result in 2Fd + Fd = 3Fd clockwise moments.
12	D
	Initial extension = $1/3.5 = 0.286$ m Therefore, increase in EPE = $\frac{1}{2}$ (3.5)[(0.286 + 0.40) ² - 0.286 ²] = 0.68 J.
13	Α
	Let the mass of the ruler be m grams. Using principle of moments, taking moments about the pivot,
	$m \ge 10 = 20 \ge 60$ m = 120.
	When the 50 g mass is now hung on the string, let the pivot be at x cm mark, Using principle of moments, taking moments about the new pivot,
	120 (50 - x) = 50 (100 - x) 600 - 12x = 500 - 5x 7x = 100 x = 14 cm

14	Α
	Considering the effect of viscous force, the body would eventually reach terminal velocity. Hence:
	×↑ :
	Land to the second seco
	Since work has to be done against viscous force, the total energy (sum of E_p and E_k) would decrease.
	Considering that the velocity in viscous fluid would eventually reach terminal velocity (constant v), E_k would also reach a constant value eventually (horizontal flat graph).
15	C
	For old lamp, $P_o = 0.05 \square 60 = 3.0 W$ For new lamp, efficiency = 3.0/ 4.0 \square 100% = 75%
16	C
	At max speed, rate of work done against air resistance = 54×10^3 W
	$F v = cv^2 \times v = 54 \times 10^3 \rightarrow v = 30 \text{ m s}^{-1}$
17	В
	For a body in uniform circular motion,
	1. the angular velocity is constant because the magnitude and direction of rotation
	2. the kinetic energy is constant because speed of body is constant and kinetic
	energy is a scalar3. the linear velocity and linear momentum changes as the direction of motion
	changes but the magnitude remains unchanged
18	C
	For the carriage to turn left, the tension in the string must be directed to the left to provide for the necessary centripetal force. The centripetal force should not be drawn on the free body diagram.

19	В
	At the top of the track, the resultant force on the marble is given by (mg – normal contact
	force).
	be less than or equal to the weight of the marble
	$\Rightarrow F_{c} \le mq \Rightarrow v^{2}/r \le q$
	Hence $v \le \sqrt{ar} \Rightarrow v \le \sqrt{9.81 \times 0.050} = 0.70 \text{ m s}^{-1}$
20	В
	$V_{\rm e} = I_{\rm e} \cos 30^{\circ} \omega$ = 6.38 cos 30° × 2 $\pi/(24$ × 3600)
	$= 402 \text{ m s}^{-1}$
21	D
	Charge is quantized.
	Q = Ne where N is an integer.
22	D
	Effective resistance of the circuit increases when Bulb Q blows. Hence ammeter reading decreases, By PDP, the pd across P now decreases whereas pd across R
	increases, hence brightness of P decreases whereas R increases.
23	
	$R = \rho L/A$
	For A, $R = \rho L/A$
	For C, R= 3pL/A For C, R= oL/3A at T
	For D, $R = \rho L/3A$ at 3T
	At higher temperatures, resistance increases. Hence the resistance for D will be
	higher than that of C.
24	В
	For maximum power to be delivered the value of the lead resistor is equal to the internal
	resistance of the cell. i.e. $R = r = 2 \Omega$
	E = 10.0
	$r = \frac{1}{R+r} = \frac{1}{4} = 2.5 \text{ R}$
	$P = (2.5)^2 \times 2 = 12.5 = 13 \text{ W}$
25	В
	The potential difference across the registeres Dis siver as M // /D
	Hence, $IR = E - Ir$
	From the data, we form two equations: $(1.0) \ 3.0 = E - 1.0 \ r \dots (1)$
	$(0.4) 12.0 = E - 0.4 r \dots (2)$
	Solving the equations simultaneously, $r = 3.0 \Omega$ and $E = 6.0 V$

30	C
	The compass originally points North due to the Earth's magnetic field. When a current is passed through the wire, the current produces a magnetic field. By right-hand grip rule, the direction of the magnetic flux density due to the wire is clockwise.
	Given that the magnetic flux density due to the Earth is pointing North, in order to have zero magnetic flux density, the magnetic flux density due to the wire must be due South, and the position will therefore be C.