Anglo-Chinese School (Independent) PRELIMINARY EXAMINATION 2024 YEAR 4 EXPRESS Physics

Answer Scheme

Paper	1
I uper	-

1	2	3	4	5	6	7	8	9	10
В	С	А	С	В	D	В	D	С	В
11	12	13	14	15	16	17	18	19	20
D	В	С	А	А	D	С	С	А	В
21	22	23	24	25	26	27	28	29	30
В	А	В	В	С	А	D	А	D	А
31	32	33	34	35	36	37	38	39	40
С	В	В	А	С	D	А	А	С	С

Paper 2

Section A

Q	Part		
1	(ai)	The velocity-time graph of the car from $t = 0$ s to $t = 1.4$ s. Accept students who state 1.4s.	A1
	(aii)	Total displacement = $(20 \times 1.4) + \frac{1}{2} \times (20 + 8.0) \times (4.0 - 1.4)$ Total displacement = $28.0 + 36.4 = 64.4$ m	M1
		Average speed = $64.4 / 4.0 = 16 \text{ m/s}$	A1
	(b)	 The velocity-time graph of the car from t = 4.0 s to t = 7.0 s has a negative and constant gradient. (accept 1 mark only) <i>Many different ways of describing the motion:</i> velocity decreases constantly from 8.0 m/s to 0 m/s. accept slowing down at a constant rate with a deceleration of 2.67 m/s2./decreasing uniformly from 8.0 m/s to 0 m/s. 	B1
		This means that the car is undergoing a constant deceleration of 2.7 m/s^2 .	B1

		Accept: The car decelerated uniformly from the speed of 8.0 m/s to 0 m/s. At 0 m/s, the car is at rest.	
		Accept: The car decelerated uniformly at a lower rate as compared to time from 1.4 s to 4.0 s.	
2	(a)	The moment of a force about a pivot is the product of the force F and the perpendicular distance d from the pivot to the line of action of the force.	B1
	(b)	At equilibrium, take moment about the pivot, Sum of anti-clockwise moment = Sum of clockwise moment = $0.472 \text{ kg x } 10 \text{ N/kg x } (6.2/100) \text{ m}$ = 0.29 Nm 4.72 x 6.2 = 29 Ncm accepted Note: Mass \neq Weight (Hence $0.472 \text{ kg} \neq 4.72 \text{ N}$) Accept Direction: Downwards Clockwise	B1 M1 A1
	(c)	$\Delta \mathbf{F} \ge (1.8/100) = 0.29 \text{ (allow e.c.f from (b))}$ $\Delta \mathbf{F} = 16 \text{ N}$	M1 A1
3	(ai)	$F/(5.0 \times 10^{-5}) = 1.2 \times 10^{6} \text{ Pa}$ F = 60 N	M1 A1
	(aii)	As oil cannot be compressed, the same pressure from piston R will be transmitted equally to piston S . With a <u>larger cross-sectional area for piston S</u> , it will experience a larger force F due to $\mathbf{P} = \mathbf{F}/\mathbf{A}$. where the $\mathbf{P}_{\mathbf{R}} = \mathbf{P}_{\mathbf{S}}$ $\mathbf{F}_{\mathbf{R}}/\mathbf{A}_{\mathbf{R}} = \mathbf{F}_{\mathbf{S}}/\mathbf{A}_{\mathbf{S}}$ In other words, we can see that P s is a multiplier of P _R . This ratio is given by the ratio of A s to A _R . This is known as Pascal's Principle .	B1 B1
	(b)	Since the liquid cannot be compressed, the volume of oil displaced in piston R must be equal to the volume of oil displaced in piston S. $A_R x d_R = A_S x d_S$ $(5.0 \times 10^{-5} \text{ m}^2) x d_R = (1.5 \times 10^{-3} \text{ m}^2) x (0.20/1000 \text{ m}) x 2$ dR = 0.012 m = 1.2 cm = 12 mm Or Principle of Conservation of Energy $F_R x d_R = F_S x d_S$ $60 x d_R = 1800 x (0.20/1000 \text{ m}) x 2$ $d_R = 0.012 \text{ m}$ (where $F_S = P x A_S = (1.2 \times 10^6 \text{ Pa}) x (1.5 \times 10^{-3} \text{ m}^2) = 1800 \text{ NU}$	M1 A1 M1 A1

		60 N : 1800 N 1: 30	
		Hence $(0.20 \times 2) \times 30 = 12 \text{ mm}$ There are two piston S.	
4	(a)	Source A: Softer due to lower pressure, as the amplitude of a wave is directly proportional to pressure of air.	B1 B1
		Lower pitch of sound due to lower frequency as shown in the graph as compared to Source B.	B1 B1
		Or Source B: Louder due to higher pressure, as the amplitude of a wave is directly proportional to pressure of air. Higher pitch of sound	B1 B1 B1
		due to higher frequency shown in the graph as compared to Source A.	B1
	(bi)	Rarefaction	B1
	(bii)	Onewavelength	B1
5	(ai)	Im for every two points: -solid line for object (correct height and distance) -dotted for image (correct distance) -correct principal ray 1 drawn -correct principal ray 2 drawn (penalise for missing arrowheads and ruler – max 1m)	M2
		f = 4.0 cm $h_i = 3.0 \text{ cm}$	A1 A1

	(aii)	The image height / size will decrease. / nearer to the	ne lens	B1
		(note: it remains upright and virtual)		
		(award e.c.f. based on diagram drawn)		
	(b)	X – Ultraviolet		A1
	(0)	Y - Infra-red		Al
6	(a)	It is the work done by an electrical source to drive	e a unit	B1
		charge around a complete circuit.		
	(b)	V = IR		M1
	(2)	= (0.50)(12.0) = 6.0 V		A1
	(ci)	Read off the graph the value of I when $V = 6.0 V$		
		(since it is in parallel with the resistor R) $L_{0} = 2.5 \text{ A}$		A 1
		12 - 2.5 A		AI
	(cii)	$I_1 = I_2 + I_3 = 3.0 \text{ A}$		A1
		(accept ecf)		
	(ciii)	V across L = $12.0 \text{ V} - 6.0 \text{ V} = 6.0 \text{ V}$		M1
		Resistance of L = V/I = $(6.0 \text{ V})/(3.0 \text{ A}) = 2.0 \Omega$	TZ)	AI
		(1m for method I) K = V/1, and use I = 5.0 but wrong	V)	
		(accept ec) for 17) (accept if correctly use Reff method)		
	(d)	Lightbulb L will be less bright.		B1
7	(ai)	$I - D\Delta V$		N/1
/	(al)	1 = P/V - $840/240 - 3.5 \Delta$		$\Delta 1$
		- 0+0/2+0 - 5.5 M		711
	(aii)	5A		A1
		(4A is not a typical household fuse rating)		
			T:-1-	
	(0)	The live wire was in contact the neutral wire	ПСК	- A2
		The live wire was in contact with the ground wire	1	
		The neutral wire was in contact with the metal casing		-
		The neutral wire was in contact with the ground wire		
		The ground wire was disconnected from the ground	\checkmark	
		1m for each correct \checkmark		
		For incorrect \checkmark , max 1m		
		For every 2 incorrect \checkmark , - 1m		
	1			1

8	(a)	$^{241}_{95}Am \rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	A2
	(bi)	No smoke: ionising <u>current</u> when alpha emission hits the detector Smoke: alarm sound when smoke absorbs alpha emission and ionising current is disrupted .	B1 B1
	(bii)	Relatively low penetrating power / relatively high ionising effect Use proper terminology.	B1
	(c)	1728/432 = 4 half-lives $800/2^4 = 50$ Bq	M1 A1
	(d)	20 counts/min Note: 1 Bq ≠ 1 count/min. Bq is a unit for radioactivity (no. of disintegrations/second) and not detection of radioactivity by GM counter.	A1
9	(a)	Conduction in liquid molecules The liquid molecules in the hotter region will move faster and collide with the other neighbouring cooler region.	B1 B1
		Convection currents in the soup The hotter liquid molecules expands, rise up the soup to the surface as they are less dense while the cooler liquid molecules of the soup sinks to the bottom of the glass bowl as they are denser.	B1 B1
	(b)	During heating, the thermal energy from the microwave is transferred to the soup.	
		The liquid particles move faster, hence there is an increase in the particles' kinetic energy. The increase in average kinetic energy of the particles increases the temperature of the soup.	B1
		The potential energy of the liquid particles increases with the increase in the average separation of the particles.	B1
		The sum of the kinetic store and potential store of the particles gives the internal store of the particles. Hence, the internal store of the particles increases.	
		Old Syllabus: Accept students stating: The increase in average kinetic energy of the particles increases the temperature of the soup only without the increase in PE. Hence, the internal store of the particles increases.	

		New Syllabus: Accept: The potential energy of the liquid particles increases with the increase in the average separation of the particles.	
		Hence, the internal store of the particles increases.	
	(c)	Q = mc∆ θ = (750/1000) kg x 4200 J / (kg °C) x (80 – 26) °C Q = 170 100 J ≈170 000 J	M1 A1
	(d)	Energy required to raise the temperature of an object by 1°C is given by:	B1
		For the soup: Qsoup=msoup×csoup = 0.75×4200=3150 J/°C	B1
		For the glass bowl: Qbowl=mbowl×cbowl = 0.6×750=450 J/°C	
		The glass bowl requires 450 J of energy to increase its temperature by 1°C. The soup requires 3150 J of energy to increase its temperature by 1°C.	B1
		Since the microwave energy is being transferred to both the soup and the glass bowl at the same rate, the glass bowl, which requires lesser energy per degree of temperature increase, will experience a faster temperature rise compared to the soup.	
		OR Since the pyrex glass bowl requires lesser energy than the soup to raise to the same amount of temperature. Hence, pyrex glass bowl's temperature will rise faster than the soup. $Q = 170\ 000\ J\ (soup)$ $Q = (600/1000)\ kg\ x\ 750\ J\ /\ (kg\ ^C)\ x\ (80 - 26)\ ^C = 24300\ J\ (pyrex\ glass\ bowl)$	
		OR Since the pyrex glass bowl has a lower specific heat capacity as compared to the soup to raise, the pyrex glass bowl's temperature will rise faster than the soup.	
10	(ai)	The copper rod will roll to the left	B1
	(***)	When switch is closed, a current flows through the rod, generating a magnetic field that interacts with the uniform magnetic field to generate a force on the rod. By Fleming's left hand rule, since the current is upward and	B1
		uniform magnetic field points into the page , the direction of the generated force is to the left.	B1

	(aii)	Adjustment to set-up	Direction of movement	Speed of movement	
		The current from the power source is increased	No change	increases	B1
		Both the direction of the uniform magnetic field AND the direction of the current from the power source are reversed	No change	No change	B1
	(bi)	Tereised		II	
		 Direction is correct Overall pattern is correct (weak field in centre, stronger field a 	of syllabus) SS-cross)	B1 B1
	(bii)	Arrow points inward toward each oth (e.c.f. from bii: follow S field to W fi	er. eld)		B1
	(c)	Copper rod A and B move to the left B. Both rods will experience the motor e rods attract each other , and this opposite direction (right) as the more same for B (left) Accept any other reasonable answer effect (e.g. copper rod A doesn't move B moves to the left, until A and B tour left together)	t, but A move ffect to the lef attractive for tor effect for or phrasing to e/moves to the ch and both m	s slower than it. But the two rce is in the A but in the o the same e right, while ove to the	B1 B1
11 Eith er	(a)	Air resistance is zero B1 or No air resistance acts (at first) on s or Weight of sky diver is much larger	sky-diver. r than air resis	tance.	B1
	(b)	220 N 600 N			600 N force drawn must be longer in length as compared to 220 N. [B1] Correct Values [B1]

	(ci)	When the air resistance acting against the sky-diver equals his	B1
		speed this is known as terminal velocity	
		speed, this is known as terminal veroeity.	
	(cii)	velocity / m s ⁻¹	Correct shape
			[B1]
			No need
			values
		Time / s	
	(-***)	$\mathbf{W} = \mathbf{w} + \mathbf{c} = 0 \mathbf{N} \mathbf{a} + \mathbf{c} = 0 \mathbf{N} \mathbf{a}$	M1
	(CIII)	W = mg = 600 kg x 10 N/kg = 600 N	M1
		From the graph, when $W = 600$ N, the speed is 5.0 m/s.	M1
		Hence terminal velocity is 5.0 m/s.	A1
	(civ)	From the graph, Air resistance = 700 N	M1
		Resultant force = $700 - 600 = 100$ fN $a = F/m = 100/60 = 1.7 m/s^2$	
		$a = F/m = 100/60 = 1.7 \text{ m/s}^2$ $a = F/m = 100/60 = 1.7 \text{ m/s}^2$ (upwards)	A1 A1
11 OP	(a)	The alternating current in the primary coil generates an alternating magnetic field	D1
UK		The soft iron core directs the alternating magnetic field into the	DI
		secondary coil	B1
		The changing magnetic flux linkage / magnetic field in the	
		secondary coil gives rise to an induced e.m.f. across the coil.	B1
	(bi)	V. N.	
		$\frac{r_s}{V} = \frac{r_s}{N}$	M1
		$V_p N_s 2400$	
		$V_s = \frac{1}{N_p} \times V_p = \frac{1}{1000} \times 240 V = 576 V$	A1
		p	
	(bii)	$I_p V_p = I_s V_s$	M1
		$I = \frac{l_p V_p}{l_p} = \frac{(6.00)(240)}{(240)} = 2.50.4$	A 1
		$r_{s} = \frac{V_{s}}{V_{s}} = \frac{V_{s}}{576} = 2.50 \text{ A}$	AI
		Accept e.c.f.	
	(biii)	$P = I^2 R$	M1
	($= (2.50)^2 (24.0) = 150 W$	A1
		Accept e.c.f.	

(c)	Lamination reduces the transfer of energy to the internal store	B1
	by eddy currents (which are local induced electric currents that	
	flow in loops.)	
	OR	
	Lamination cuts off the path taken by eddy currents, keeping	
	these induced currents small and reducing energy loss to heat .	