

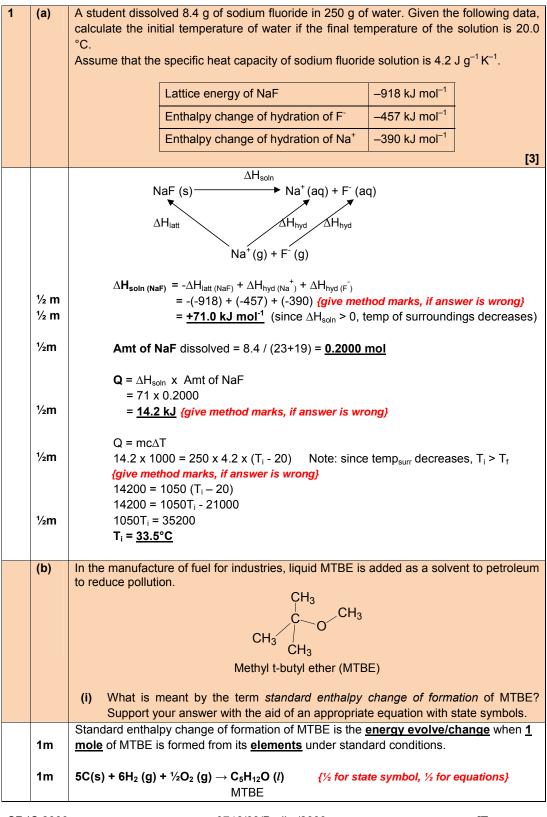
SERANGOON JUNIOR COLLEGE General Certificate of Education Advanced Level Higher 2

CHEMISTRY

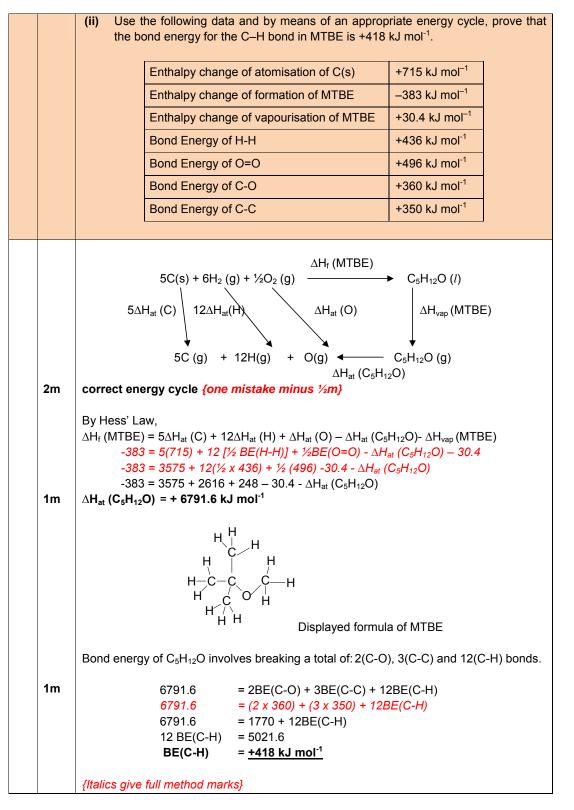
Preliminary Examination Paper 3 Free Response MARK SCHEME

9746/03

20th August 2009 2 hours


CONFIDENTIAL DOCUMENT

Teachers to keep this document under lock and key until 20 August 2009 12pm.


This document consists of 19 printed pages and 1 blank page

SRJC 2009

9746/03/Prelim/2009

9746/03/Prelim/2009

9746/03/Prelim/2009

 (iii) Suggest a reason for the difference in the C–H bond energy in (b)(ii) from the value given in the Data Booklet. [7] The bond energy values from the Data Booklet are <u>average values</u> and would differ from experimental values. Magnesium chloride, MgCl₂, is an important coagulant used in the preparation of soy products. The lattice energy of magnesium chloride is given to be –2490 kJ mol⁻¹. (i) How would you expect the numerical magnitude of the lattice energy of barium chloride, BaCl₂(s) to compare with that of MgCl₂(s)? Hence predict a likely value for the lattice energy of barium chloride. AH_{latt} is proportional to <u>q⁺q⁻</u>/_{r⁺+r⁻}, Ionic radius: Mg²⁺ < Ba²⁺ AH_{latt} : MgCl₂ > BaCl₂ or
[7] The bond energy values from the Data Booklet are <u>average values</u> and would differ from experimental values. Magnesium chloride, MgCl ₂ , is an important coagulant used in the preparation of soy products. The lattice energy of magnesium chloride is given to be -2490 kJ mol ⁻¹ . (i) How would you expect the numerical magnitude of the lattice energy of barium chloride, BaCl ₂ (s) to compare with that of MgCl ₂ (s)? Hence predict a likely value for the lattice energy of barium chloride. m ΔH_{latt} is proportional to $\frac{q^+q^-}{r^+ + r^-}$, Ionic radius: Mg ²⁺ < Ba ²⁺ $ \Delta H_{latt} $: MgCl ₂ > BaCl ₂
 The bond energy values from the Data Booklet are <u>average values</u> and would differ from experimental values. Magnesium chloride, MgCl₂, is an important coagulant used in the preparation of soy products. The lattice energy of magnesium chloride is given to be -2490 kJ mol⁻¹. (i) How would you expect the numerical magnitude of the lattice energy of barium chloride, BaCl₂(s) to compare with that of MgCl₂(s)? Hence predict a likely value for the lattice energy of barium chloride. MH_{latt} is proportional to ^{q+q-}/_{r⁺+r⁻}, Ionic radius: Mg²⁺ < Ba²⁺ ΔH_{latt} : MgCl₂ > BaCl₂
 Magnesium chloride, MgCl₂, is an important coagulant used in the preparation of soy products. The lattice energy of magnesium chloride is given to be -2490 kJ mol⁻¹. (i) How would you expect the numerical magnitude of the lattice energy of barium chloride, BaCl₂(s) to compare with that of MgCl₂(s)? Hence predict a likely value for the lattice energy of barium chloride. n ΔH_{latt} is proportional to ^{q+q-}/_{r⁺+r⁻}, Ionic radius: Mg²⁺ < Ba²⁺ ΔH_{latt} : MgCl₂ > BaCl₂
 products. The lattice energy of magnesium chloride is given to be -2490 kJ mol⁻¹. (i) How would you expect the numerical magnitude of the lattice energy of barium chloride, BaCl₂(s) to compare with that of MgCl₂(s)? Hence predict a likely value for the lattice energy of barium chloride. n ΔH_{latt} is proportional to ^{q⁺q⁻}/_{r⁺+r⁻}, n lonic radius: <u>Mg²⁺ < Ba²⁺</u> ΔH_{latt} : <u>MgCl₂ > BaCl₂</u>
chloride, BaCl ₂ (s) to compare with that of MgCl ₂ (s)? Hence predict a likely value for the lattice energy of barium chloride. Δ H _{latt} is proportional to $\frac{q^+q^-}{r^++r^-}$, In Ionic radius: Mg ²⁺ < Ba ²⁺ $ \Delta$ H _{latt} : MgCl ₂ > BaCl ₂
$\Delta H_{latt} \text{ is proportional to } \frac{q \cdot q}{r^{+} + r^{-}},$ n Ionic radius: $\underline{Mg^{2+} < Ba^{2+}}$ $ \Delta H_{latt} : \underline{MgCl_2 > BaCl_2}$
$ \Delta H_{latt} : \underline{MgCl_2 > BaCl_2}$
or
Numerical value of lattice energy of BaCl ₂ will be smaller . or
Lattice energy of <u>BaC<i>l</i>₂ will be less exothermic.</u>
n Accept any value smaller than 2490 kJ mol ⁻¹ .
The enthalpy change of reaction, for the reaction below is given to be -391 kJ mol ⁻¹ .
$2MgCl(s) \rightarrow MgCl_2(s) + Mg(s)$
(ii) Comment on the stability of MgCl (s) relative to that of MgCl ₂ (s). [4]
Since $\Delta H_{reaction}$ is exothermic,
n Energy of products is lower than that of reactants.
$MgCl_2(s)$ is energetically <u>more stable</u> than $MgCl(s)$.
(accept proper energy profile diagram)
Part of the research on Supramolecular Chemistry focuses on Host-Guest Chemistry, in
which cationic transition metal complexes are involved in second-sphere coordination
which is provided by ligands with an organised set of donors.
For example, a transition metal rhodium complex that contains hydrogen bond donor groups (ammonia or water ligands) in its primary coordination sphere can be considered
as a guest capable of binding to a hydrogen bond acceptor host via second sphere
coordination.
(i) State the bonding formed between rhodium and ammonia.
dative / coordinate/covalent bond
(ii) Describe the chemical structure and bonding in solid rhodium.
(ii) Describe the chemical structure and bonding in solid rhodium. n Rh has a giant metallic structure with strong electrostatic forces of attraction

9746/03/Prelim/2009

	(iii) Show with aid of a diagram the intermolecular bonding in ammonia.
¹ ⁄₂m 1∕₂m	Partial charge Others
	(iv) Predict and account for the boiling point of ammonia relative to water.
½m	Both NH3 and H2O have simple molecular structureswith intermolecular hydrogenbonds.For the identification of hydrogen bonds, either mentioned here or in part (iv).
½m	<u>Number / Extent</u> of hydrogen bonds: <u>NH₃ < H₂O</u>
½m	<u>Energy</u> required: <u>NH₃ < H₂O</u>
½m	Boiling point: NH ₃ < H ₂ O
	(v) Predict and account for the solubility of ammonia in water.[6]
¹ ⁄₂m 1∕₂m	NH_3 is $\underline{soluble}$ in water as $\underline{favourable}\ hydrogen\ bonds\ between\ NH_3$ and water / $\underline{solute-solvent\ interaction}\ can be formed.$
	{Do not accept the $NH_3 + H_2O \Rightarrow NH_4^+ + OH^-$ as the extent of dissociation is too small}
	[Total: 20]

9746/03/Prelim/2009

2	(a)	The table below gives a Table.	some data	on some c	oxides of ele	ements in P	eriod 3 of	the Periodic
		oxide	Na ₂ O	MgO	Al_2O_3	SiO ₂	P ₄ O ₆	SO ₂
		Boiling point / K	1548	3873	3253	2503	448	263
		(i) Explain, in term is higher than P.		ical bonding	g and struct	ure, why th	e boiling p	oint of MgO
	½m ½m 1m		ergy is nee ng ionic bo rces of att	eded to onds	ween oppo	sitely char	ged ions.	
	½m ½m 1m	 small amount of en overcome the weak has a low boiling poi 	iergy is ne <u>c intermole</u> nt	eded to ecular Van				
		(ii) Write an equation	on for the re	eaction of A	l_2O_3 with di	lute hydrocl	nloric acid.	
	1m	Al₂O₃ (s) + 6HCl (aq) →	> 2A/Cl ₃ (a)	q) + 3H₂O (l)	{no need :	state symb	ol}
		{ ¹ / ₂ m species, ¹ / ₂ m for (
		(iii) Write an equation hydroxide.	on for the	reaction of	SO ₂ and A	l ₂ O ₃ separa	tely with d	ilute sodium
	1m	SO ₂ (g) + 2NaOH (aq)	→ Na ₂ SO ₃	(aq) + H ₂ O	(1)	{no need	state symb	ool}
		$\{\frac{1}{2} m \text{ species}, \frac{1}{2} m \text{ for } 0\}$	coefficient}					
		Al ₂ O ₃ (s) + 2NaOH(aq)	+ 3H ₂ O(<i>l</i>) ·	→ 2Na[A/(C	OH)₄] (aq)	{no need s	tate symbo	ol}
	1m	{ ¹ / ₂ m species, ¹ / ₂ m for (
		(iv) Comment on the	e role of Al	₂ O ₃ in react	ions (a)(ii) a	and (iii) abo	ve.	[8]
	1m	Al ₂ O ₃ behaves as an ar	nphoteric	oxide or				
		Al ₂ O ₃ is able to react w			se			
	(b)	(i) Write a balance	d equation	for the acti	on of heat o	on magnesiu	um nitrate.	
	1m	$\frac{Mg(NO_3)_2(s) \rightarrow MgO(s)}{\frac{1}{2} m species, \frac{1}{2} m for a}$) {no need	state symb	ol}	
		(ii) Magnesium nitr Explain why th barium nitrate strontium nitrate	rate decon e two nitr would deco	nposes at ates decor	npose at d	ifferent terr	peratures.	Predict if
	½m 1m	Down the group, Ionic radius of cation <u>Charge density</u> of c <u>Polarising power</u> of <u>or</u> <u>Polarising effect</u> or 	ation: <u>Mg²</u> f cation: <u>M</u> g	<mark>⁺ >Sr²⁺</mark> / <u>de</u> g ²⁺ > Sr ²⁺ /	<u>decreases</u>			
	½m						a lower tem	perature
	1m	Thermal stability of Gr would decompose at a						rium nitrate

9746/03/Prelim/2009

(c)	For each of the following pairs of structural isomers, describe one chemical test which would enable you to distinguish them. You should state the reagents and conditions for
	each test, and describe the observations.
	(i) CH ₂ (NH ₂)COC/ and CH ₂ C/CONH ₂
	Test:
½m 1∕₂m	Add <u>water</u> to each compound at <u>rtp</u>
/2111	Observation:
½m	CH ₂ (NH ₂)COC <i>l</i> will form white fumes of HC <i>l</i>
½m	CH ₂ C/CONH ₂ will <u>not form</u> white fumes
1m	OR Test: Add NaOH (aq) and heat, test any gas evolved with moist red litmus. (can use blue
	litmus as well)
½m	Observation:
½m	CH ₂ (NH ₂)COC <i>l</i> : Gas will be evolved, moist red litmus remain unchanged .
	CH ₂ C/CONH ₂ :Gas evolved turns <u>moist red litmus blue</u> .
	$\left[\bigcirc\right]$
	CI CH ₂ I CH ₂ Cl
	(ii) and and a second sec
½m	Test: <u>heat</u> each compound
½m	with NaOH(aq).
½m	Acidify with <u>dil. HNO₃</u> (to neutralise the excess NaOH to prevent ppt of AgOH from
½m	forming.) before adding <u>AgNO₃(aq)</u>
/2	Soloro adding <u>gregladi</u>
	OR
2m	heat each compound with ethanolic silver ethanoate
	Observation:
½m	Chlorobenzene derivative will form a <u>yellow ppt</u> of AgI
½m	Iodobenzene derivative will form a <u>white ppt</u> of AgC <i>l</i>
	(iii) and
	[8]
½m	Test: <u>heat</u> each compound
⁷² Ⅲ 1∕₂m	with $H_2SO_4(aq)$ (NaOH or H ⁺)
1∕₂m	then add <u>KMnO₄(aq) / K₂Cr₂O₇(aq)</u> with H ₂ SO ₄ (aq)
½m	<u>heat</u>
	_

7

SRJC 2009

9746/03/Prelim/2009

	Observation:
½m	Left ester will <u>decolourise</u> KMnO ₄ (aq) / turn K ₂ Cr ₂ O ₇ (aq) from <u>orange to green</u>
½m	Right ester will <u>remain purple</u> / <u>remain orange</u>
	OR
	Alternative Test:
1m	<u>heat</u> each compound with <u>H₂SO₄(aq)</u> (accept HC <i>l</i>)
1m	then add alkaline aqueous iodine, warm
	Observations
	Observation:
½m	Left ester: pale yellow ppt observed or brown iodine solution decolourised
½m	Right ester: no pale yellow ppt observed orbrown solution remain unchanged.
	· · · · · · · · · · · · · · · · · · ·
	1⁄₂m 1m 1m 1⁄₂m

[Total: 20]

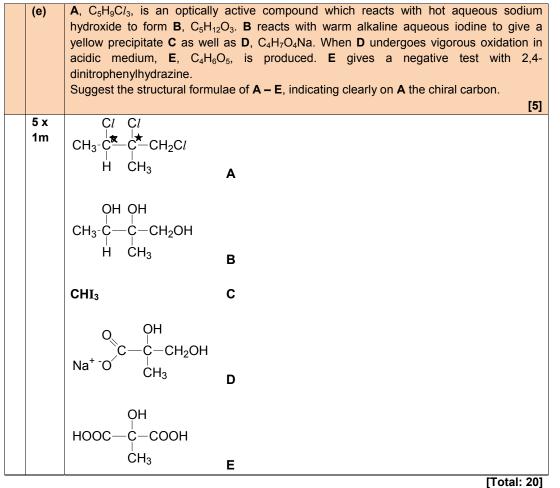
3	(a)	of the ad	dition of chlorine t	o drinking water.		efly the importance
	1m				or disinfect wate	<u>r</u>
			g and effective ox			t room temperature
				•		r. State the type of
		reaction		that	chlorine	undergo.
		[3]				
	1m		$_{2}$ (aq) $\rightarrow Cl^{-}$ (aq)	+ C/O ⁻ (aq) + H ₂ O	(1)	
		OR				
		2 NaOH (aq) + {no need state		<i>l</i> (aq) + NaC <i>l</i> O (aq	$) + H_2O(l)$	
		•	symbol} ½ m for coefficien	f}		
		(, cp c c, ,	2	9		
	1m	Presence of ba	ise will result in th	ne <u>disproportionat</u>	t <u>ion</u> of chlorine, he	nce eliminating the
		smell. (if state redox award ½ mark)				
	(b)	The oxyacids of chlorine are:				
		Chemical	HOCI	HOCIO	HOC _l O ₂	HOC/O ₃
		formula				
		Chemical	chloric (I) acid	chloric (III) acid	chloric (V) acid	chloric (VII) acid
		Name	7.50	1.06	- 1	10
		Ka	10 ^{-7.50}	10 ^{-1.96}	10 ¹	10 ¹⁰
		(i) Describe and explain how an increase in oxygen content of the acids affects K_a .				
	1m				lorine atom, <u>the gr</u>	
					tron will be pulled	away) from the
			s weakening the		brook the O H be	and and to
		dissociate H ⁺ .	amount on <u>energ</u>	y is thus required to	o break the <u>O–H bo</u>	ond and to
		Therefore, HOC/O ₃ is the most acidic and have the largest K_a value.				
			.		y u -	
		Therefore, HOC	ClO_3 is the most a	cidic and have the	largest K_a value.	

SRJC 2009

9746/03/Prelim/2009

	(ii) Draw the dot-and-cross diagram of C/O_2^- . Suggest the shape and state bond angle
	of the ion.
	[4]
1m	$\begin{bmatrix} t & t & t \\ t & t & t \\ t & t & t \\ t & t &$
1m	bent
1m	104.5° or 104° or 105° (ecf for bond angle only)
(c)	(i) A sample of sodium hypochlorite, NaOCl, was dissolved in 100 cm ^{3} of
	$0.123 \text{ mol dm}^{-3} \text{ HOC}l$ solution forming a buffer of pH 6.20. Determine the ratio of
	the concentration of OCl^{-} to $HOCl$ in the solution.
	[1]
	$[OCl^-]$
	pH = pKa + lg [HOCl]
	$[OCl^-]$
½ m	6.20= 7.50 + lg [HOCl]
	[<i>OCl⁻</i>]
	$\lg^{[HOCl]} = -1.30$
1/	
½ m	[HOCl] = 0.0501
	(ii) The buffer is then used to absorb HCl gas. By using the above ratio or otherwise,
	calculate the amount of gaseous HCl (in mol) that is required to be added to the
	buffer solution until it reaches pH 6. [4]
	$[OCl^-]$
	[HOCl] = 0.0501
	$[OCl^{-}] = 0.0501[HOCl]$

= 0.0501 x 0.123 $= 0.006162 \text{ mol dm}^{-3}$ 1m ½ m On addition of HCl, let x be the concentration of H^+ [HOCl]new = 0.123 + x[OCl]new = 0.006162 - x $[OCl^{-}]$ $6.00 = 7.50 + \lg \overline{[HOCl]}$ 0.006162 - x $6.00 = 7.50 + \lg \quad 0.123 + x$


SRJC 2009

9746/03/Prelim/2009

[Turn over

-	
	0.006162 - x
	$-1.50 = \lg 0.123 + x$
	0.006162 - x
½ m	0.03162 = 0.123 + x
	0.03162(0.123) + 0.03162x = 0.006162 - x
	1.03162x = 0.00227
1m	$x = 0.00220 \text{ mol dm}^{-3}$
	100
	amount of HCl= 0.00220 x $\frac{100}{1000}$
1m	= 0.000220 mol
<i>(</i> 1)	
(d)	In the production of CH_3CI using methane and chlorine under certain conditions, it has
	been noticed that a small quantity of chloroform, CHCl ₃ , has been produced.
	Using CH ₃ C <i>l</i> as the starting material, name and describe the mechanism of this reaction
	that would result the production of chloroform.
½ m	Free Radical Substitution
l	
	Initiation
1/	$Ultraviolet light$ $Cl - Cl \longrightarrow 2 Cl \bullet $ [Slow step]
½m	$C_i - C_i \longrightarrow Z_i C_i \bullet $ [Slow step]
	Propagation
½m	$CH_3Cl + Cl \bullet \longrightarrow CH_2Cl \bullet + HCl$
	$CH_2Cl \bullet + Cl_2 \longrightarrow CH_2Cl_2 + Cl \bullet$
	Chain reaction continues
½m	$CH_2Cl_2 + Cl \bullet \rightarrow CHCl_2 \bullet + HCl$
	$CHCl_2 \bullet + Cl_2 \rightarrow CHCl_3 + Cl \bullet$
	Termination
½m	$Cl \bullet + Cl \bullet \longrightarrow Cl_2$
72111	_
	$CHCl_2 \bullet + CHCl_2 \bullet \longrightarrow CHCl_2 CHCl_2$
	$CHCl_2 \bullet + CI \bullet \longrightarrow CHCl_3$
½ m	For mentioning of initiation, propagation and termination.

9746/03/Prelim/2009

9746/03/Prelim/2009

The use of the Data Booklet is required for this question				
(a)	 (i) Given the following half cells: H₂O (<i>l</i>) / H₂ (g) PbO₂ (s) / Pb²⁺(aq) MnO₄⁻ (aq) / MnO₂ (s) Suggest the half cell which, when combined with the Cu²⁺(aq) /Cu (s) half cell, will generate the highest E^θ_{cell}. State the anode and the cathode of the electrochemical cell, indicating the direction of electron flow in the external circuit. 			
1 m ½ m 1m ½ m	$\begin{array}{ll} Cu^{2+}(aq) \ /Cu \ (s) & (+0.34 \ V) \\ H_2O \ (l) \ / \ H_2 \ (g) & (-0.83 \ V) \\ PbO_2 \ (s) \ / \ Pb^{2+}(aq) & (+1.47 \ V) \\ MnO_4^{-} \ (aq) \ / \ MnO_2 \ (s) & (+1.67 \ V) \\ From \ E^{\theta}_{cell} = E^{\theta}_{red} \ - \ E^{\theta}_{oxd} \\ Combination \ which \ will \ result \ in \ highest \ voltage \ is \ when \\ Cu^{2+}/Cu \ half \ cell \ undergo \ oxidation \ and \ when \ MnO_4^{-/} \ MnO_2 \ undergo \ reduction \\ For \ choosing \ MnO_4^{-/}MnO_2 \\ Anode: \ Cu^{2+}/Cu \\ Cathode: \ MnO_4^{-/}MnO_2 \\ E^{\theta}_{cell} = + \ 1.67 \ - \ 0.34 \ = \ + \ 1.33 \ V \\ (ecf \ \% \ m \ if \ chose \ wrong \ half \ cell) \\ \end{array}$			
	(ii) The set up from a(i) was then used as the battery in the electrolysis of a solution of copper (II) sulphate with inert platinum electrodes. An ammeter showed a reading of 0.45 A in the external circuit of a cell. 0.30 g of copper metal was deposited at the cathode after 30 minutes. Determine the actual current used in the electrolysis process. Hence, determine the percentage error (if any) of the ammeter reading.			
1⁄₂m 1⁄₂m 1⁄₂m	At the cathode, $Cu^{2^+} + 2e \rightarrow Cu$ Amount of copper deposited = $\frac{0.30}{63.5} = 4.724 \times 10^{-3}$ mol Amt of copper deposited = $\frac{Q}{2F}$ $Q = 4.724 \times 10^{-3} \times 2 \times 96500 = 911.732 \text{ C}$ (Allow ECF) $I = \frac{Q}{t} = \frac{911.732}{30 \times 60} = 0.506\text{ A}$ (Allow ECF) % error = $\frac{0.506 - 0.450}{0.506} \times 100\% = 11.1\%$			

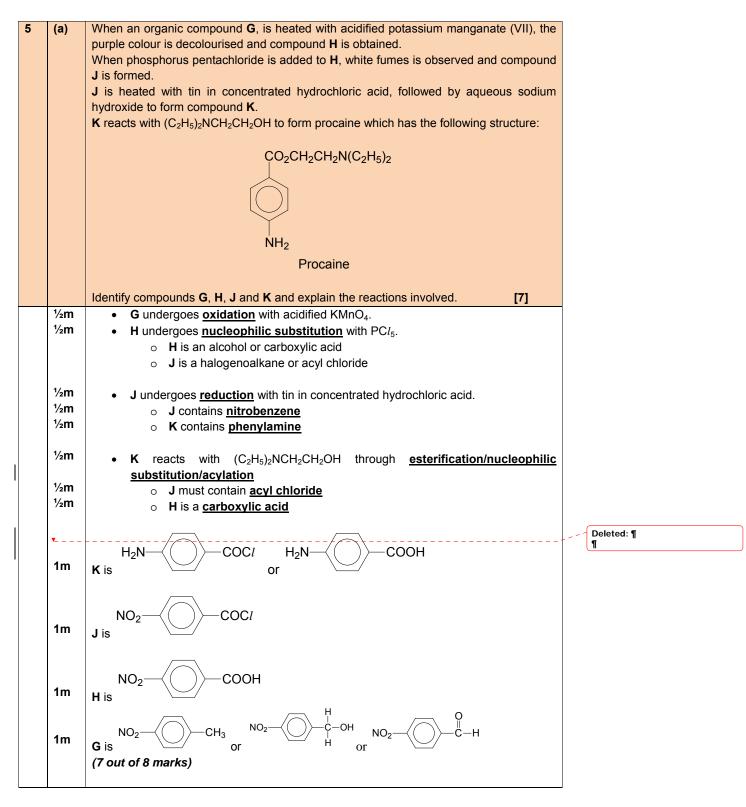
9746/03/Prelim/2009

	(iii) A student carried out a reaction involving potassium dichromate (VI) with an unknown half cell which consists of transition metal ions. The Gibbs Free Energy of the reaction was known to be -324 kJ mol^{-1} and the procedure involved transfer of 6 mol of electrons from the unknown solution to potassium dichromate (VI). Using the expression of $\Delta G = -nFE^{\theta}_{cell}$, where n is the number of electrons transferred, F is the Faraday constant and E^{θ}_{cell} is the overall cell potential, determine the E^{θ}_{cell} value and hence deduce the identity of the unknown half cell. [8]
1m	Using $\Delta G = -nFE_{cell}^{\theta}$ -324 x 10 ³ = - 6 (96500) E_{cell}^{θ} <u>$E_{cell}^{\theta} = + 0.5595 V$</u>
	Since procedure involved transfer of 6 mol of electrons from potassium dichromate (VI) to the unknown solution,
	Reduction: $Cr_2O_7^{2-}$ + 14H ⁺ + 6e → 2Cr ³⁺ + 7H ₂ O (+1.33) E _{red} = +1.33 V
	Using $E_{cell}^{\theta} = E_{red}^{\theta} - E_{oxd}^{\theta}$ 0.5595 = +1.33 - E_{oxd}^{θ}
1m 1m	E_{oxd}^{θ} = -(0.5595 – 1.33) = +0.77 V The E_{oxd}^{θ} tally with the <u>Fe³⁺/Fe²⁺ half cell</u>
(b)	(i) Copper is a transition element and can exist in variable oxidation states. Suggest why transition elements have the tendency to have variable oxidation states.
1m	Transition metals possess variable oxidation states <u>due to the small energy difference</u> <u>between the 3d and 4s electrons.</u> Thus different number of 3d and 4s electrons may be lost to form stable ions or compounds of different oxidation states.
	(ii) When dilute ammonia is gradually added to a solution containing copper (II) ions, a pale blue precipitate is formed, which re-dissolves on adding excess dilute ammonia. Explain the above observations, writing equations where appropriate.
½m {	$\begin{array}{rcl} NH_3(aq) + H_2O(l) & \rightarrow & NH_4^+(aq) + OH^-(aq) \\ Cu^{2+}(aq) + 2OH^-(aq) & \longrightarrow & Cu(OH)_2 \ (s) \ \ (1) \end{array}$
1m ½m	 When NH₃(aq) is added gradually, [OH⁻] will increase Ionic product of Cu(OH)₂ > K_{sp} of Cu(OH)₂ Pale blue ppt. Cu(OH)₂ is formed
¹⁄₂m	$[Cu(H_2O)_6]^{2^+}(aq) + 4NH_3(aq) = [Cu(NH_3)_4(H_2O)_2]^{2^+}(aq) + 4H_2O(l)(2)$ deep blue
½m	 When excess NH₃ is added, <u>NH₃</u> ligands replaces the <u>H₂O</u> ligands, forming a <u>more stable deep blue</u> [Cu(NH₃)₄(H₂O)₂]²⁺ complex with Cu²⁺(aq).
1⁄₂m 1∕₂m	 [Cu²⁺] decreases as it is being used to form the complex, equilibrium position in (1) shifts left to increase [Cu²⁺] Pale blue ppt dissolves.
SRJC 200	9 9746/03/Prelim/2009 ITurn over

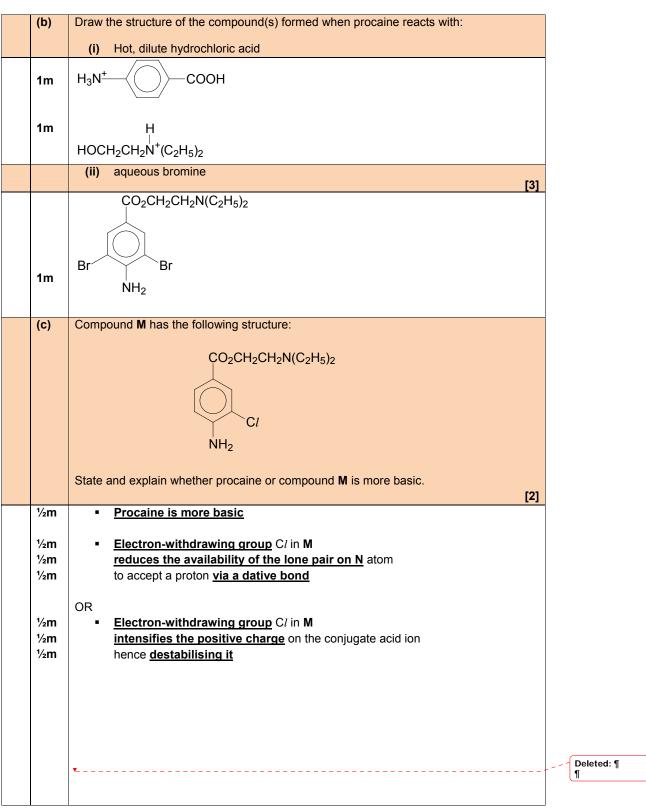
9746/03/Prelim/2009

	(iii) Explain why copper (II) ions solution is coloured.
	[7]
1m	The <u>d orbitals of Cu^{2*} (aq) are split into two different energy level</u> due to presence of <u>H₂O ligands</u> .
1m	The <u>d</u> electron undergoes <u>d-d transition</u> and is promoted to a higher energy d orbital.
	During the process, red wavelength of light energy from the visible region of the electromagnetic spectrum is absorbed and <u>blue wavelength is transmitted</u> which appears as the <u>colour observed</u> .
(c)	(i) Fehling's solution, which is a solution of alkaline aqueous copper (II) complex, is commonly used to test for the presence of a functional group. Determine the organic product formed when compound F reacts with Fehling's solution.
	CH ₂ CHO
	СНО
	CH ₂ CH ₂ COH
	Compound F
1⁄₂ m	CH ₂ COO ⁻
½ m	CHO CH ₂ CH ₂ COO ⁻
	 (ii) Compound F was allowed to react with hydrogen in the presence of nickel catalyst. Explain why nickel is able to catalyse the reaction and draw the product formed in this reaction. [3]
½m	<u>Nickel has partially filled 3d orbitals</u> which allow the reactants molecules to be <u>ad</u> sorbed onto the catalyst surface.
¹⁄₂m	This adsorption lowers the activation energy and allowing reaction to occur. H H-C-OH
1m	$\begin{array}{c cccccc} H & H & H & H \\ H & H & H \\ H & -C - C - C - C \\ H & H & H \\ H & H & H \end{array}$

9746/03/Prelim/2009

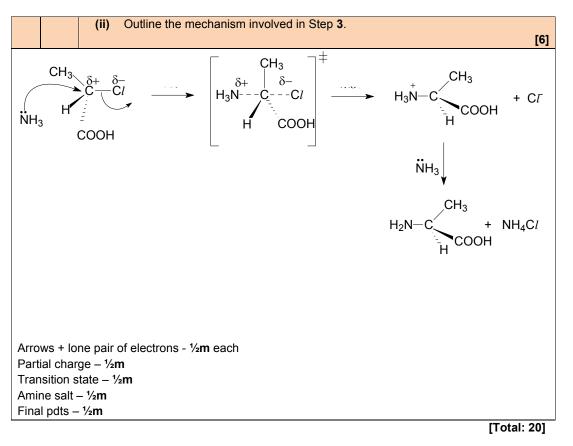

(d)	Haem can be represented schematically as shown below. Briefly explain how the haemoglobin carry oxygen and why carbon monoxide are toxic to the human body.
	H ₂ 9 $H_{2}9$ $H_{2}9$ $H_{2}0$
	[2]
	 In haemoglobin molecule, Fe(II) ion is octahedrally bonded to five nitrogen atoms and a water molecule.
½m	 H₂O ligand may be replaced by an <u>oxygen (O₂) ligand</u> in a <u>reversible</u> reaction
½m	allowing the haemoglobin to carry oxygen from one part of body to another.
½m	• Stronger ligands like CO (or CN) bond irreversibly with haemoglobin and this
½m	prevents the haemoglobin from carrying oxygen.
 	[Total: 20]

9746/03/Prelim/2009


[Turn over

SRJC 2009

15


9746/03/Prelim/2009

9746/03/Prelim/2009

(d)	The diagram below shows the structure, at pH 7, of a fragment from a protein which contains 4 amino acids P , Q , R and S in the following sequence:
	Ċ ₂ H ₅ ĊH ₂ OH ĊH ₃ ĊH(CH ₃) ₂
	(i) Draw the structures of the amino acids, Q and R , when this protein is hydrolysed.
	H ₂ NCHCOOH
¹⁄₂m	Q: CH ₂ OH
	H ₂ NCHCOOH
½m	R: CH ₃
	(ii) State the interactions in amino acids Q and R that could be involved in the maintenance of the tertiary structure of proteins.
1/	[2]
'∕₂M	Q: Hydrogen bond
½m	R: Van der Waals forces of attraction Amino acid R can be obtained via the following route:
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $
½m ½m	Step 1: <u>Elimination</u> <u>excess concentrated sulphuric acid</u> , heat at <u>170°C</u> OR <u>Passing alcohol vapour over alumina catalyst at 350°C</u> OR <u>Phosphoric acid</u> , heat at <u>200°C</u>
½m ½m	Step 2: <u>Electrophilic Addition</u> <u>HC/</u> , r.tp
½m ½m	Step 3: <u>Nucleophilic substitution</u> <u>Alcoholic/ concentrated NH₃, heat in a sealed tube/ heat under high</u> <u>pressure</u>
	1½m 1½m 1½m 1½m 1½m (e) 1½m 1½m 1½m

9746/03/Prelim/2009

-END OF MARK SCHEME-

SRJC 2009

9746/03/Prelim/2009

9746/03/Prelim/2009