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2012 NYJC H2 Math Preliminary exam Paper 2 solutions 
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2 (i)  Clearly f is 1-1 on the domain ( )1,1−  since every horizontal line y = k ( k ∈� ) cuts 

the graph at most once. So f –1 exists.  
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To get smallest positive n,  

let k =1.   

Hence, smallest n = 18.        
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    Let   y = x
2 – 4x. 

         Rearranging, we have   x2 – 4x – y  =  0. 

         Solving for  x, we obtain  x  =  
( ) ( )
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y−−−±
  

                                                       =  2 4 y± + . 

         Since 1x < ,  x  =  2 4 y− +   as  2 4 2y+ + ≥ . 

         So  f –1(y)  =  x  =  2 4 y− + . 

         Hence,  f –1 : x → 2 4 x− + , x ∈� , 3 5x− < < .      
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Let V be the volume of the silo. 
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Let Vd be the volume of the dome.  Vd =
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(b) Volume needed 
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5 Either stratified sampling or quota sampling method can be accepted as appropriate 
methods. Description  -  

Stratified–  
i) states that sampling frame is obtained listing the participants according to the types 
of educational institutions that they come from 
ii)states that using simple random sampling, 35, 25, 15 and 5 participants are selected 
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from each of the strata (primary, secondary, JC, poly) respectively 

Advantage – participants from all the 4 institutions are represented proportionately 

 Responses can be analysed by the institutions that participants come from 

Disadvantage – relatively inconvenient to carry out  

Quota –  

States/sets the quota to be selected from each institution type, such that they add up to 
80 in total  (e.g. 30 primary, 20 secondary, 20 JC, 10 poly) 

Selects from a list the participants for the survey, in accordance with the quota set 
above. 

Advantage – easy to choose the 80 participants 

Disadvantage – non-random method, so results obtained may be biased (e.g. the list 
may cluster participants from the same school) 

6 (i) 6 5

2 4 75C C× = ways 

 
(ii) Number of ways if at least one of the sisters are included 
     = number of ways without restriction – number of ways if none of the sisters is 
included 

= 11 8

6 6 434C C− =  

Or 3 8 3 8 3 8

1 5 2 4 3 3 434C C C C C C× + × + × =                     

(iii) Select a man to be between the 2 sisters and group the 3 of them as one unit and 
arrange 4 units round a table 

      3

1 3! 2 36C × × =  

 
(iv)First arrange the other 4 persons round the table. There are 4 ways to insert the 
sisters. 

      3! 4 24× =  

or 4

2 2! 2! 24C × × =  

 

7 (i)By G.C., we obtain a scatter plot of the diagram as follows: 
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(ii)Although from the scatter diagram, it seems that there is a negative linear 

relationship between y  and x  within the given range. However, we note that the 

trade-in value of the car cannot continue to decrease linearly to become a negative 

value eventually. Thus, a linear model may not be appropriate. 

 

(iii)Under a quadratic model, the trade-in value of the car would eventually increase 

over time, which would not make sense. 

(iv)By G.C., we transform the y  values as follows: 

 

Thus, we have ln 0.103 4.196y x= − + .  

When 5.5x = , 37.631y = . Thus, the trade-in value is $37631. 

 

8 (i)   P(first red bead is obtained on or before the 5th draw)  

= 
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5
3
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5
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(ii) P(obtaining a first green bead on the 8th  draw given that  no green bead has been 

obtained after 5 draws) = P(red on 6th and 7th draws and green on 8th draw)= 
2

2 3

5 5

   
   
   = 0.096                          

(iii) P(exactly r draws are required for beads of both colours to be obtained) 

       = 
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      = 

2 2
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      = 

2 2
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, where r = 2,3,4,…   

(iv) P(first obtaining beads of different colours after 5 or more draws) 

3 3 4 4
6 2 3 2 3

...
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             = + + + +                              
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32
5 5

6
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0.155

  = +   − −    

=

  

   Or     P(first obtaining beads of different colours after 5 or more draws)  

           =  P(obtaining same colour in the first 4 draws)  

           =  P(first 4 red beads) + P(first 4 green beads) 

           = 

4 4
2 3

5 5

   +   
   

= 0.155                                                            

9 Assume that the mass of sodium in a box follows a normal distribution.  

To test 
0

1

: 1183

: 1183

H

H

µ

µ

=

≠
   

at 5% level of significance 

Under 0H ,  
/

X
T

s n

µ−
= ~ (14)t  

Critical Region: Reject 0H  if p-value < 0.05 

Calculation: 
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15 15
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2 2
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 
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 
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12.14880952

15
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=

 
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 
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      value 0.0610p − =  

Conclusion: Since p-value = 0.0610 > 0.05, we do not reject 0H .  There is insufficient 

evidence, at 5% level of significance, to say that the mean mass of sodium in a box of 
cheese rings has changed.  
 
(ii)  

To test 
0 0

1 0

:

:

H

H

µ µ

µ µ

=

>
   

at 5% level of significance 

Under 0H ,  
/

X
Z

n

µ
σ

−
= ~ N(0,1)  

Critical Region: Reject 0H  if  calc 1.64485z >  

Calculation:  

1181.166667x = , 2 26.8σ = , n=15 

0
cal

6.8 / 15
z

x µ−
=  

Since 0H  is rejected,  cal 1.64485z > , ie. 0 1178.28µ <  

The assumption of the masses being normal distribution is still necessary as the sample 

size is small/Cannot use CLT   

 

10 (i) Let X be the number of minutes after 6:30 am that Peter takes to reach the bus stop.                      

                                       2~ (0,10 )X N  

Prob Req’d = ( 20) 0.0228P X > =  

(ii) Let Y be the number of minutes for the bus journey. 2~ (45, 20 )Y N  

Prob.Req d = ( 20) ( 10)· ( 50) (10 20)· ( 40)

0.44174 0.442

P X P X P Y P X P Y′ > + ≤ > + < ≤ >

≈ ≈
 

 

 

Let W be the number of days in a five days week in which Peter will be late for school. 

~ (5,0.442)BW . 

Prob. Req d = ( 2)

1 ( 1)

0.732

P W

P W

′ ≥

= − ≤

=
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( ) 2.21, ( ) 1.23318E W Var W= =  

By Central Limit Theorem, ~ (2.21,0.0308295)W N approx. 

Prob. Req (d 2)

0.884

P W ≥

≈

=′
 

11 Let X be the number of calls reporting on a lost card in 1 hour,  
  X ~ Po(18)               
(i)Required prob = P(X > 12) = 1 – P(X ≤ 12) 
                           =  0.908(3308)                   
(ii)Let Y be the total number of calls received in 15 minutes,  
                     Y ~ Po(4.5+3+6)  
Required prob = P(Y ≤ 12) = 0.409    
    
(iii)Let W be the number of one-hour periods where more than 12 calls reporting a lost 
card are received in an hour, out of 24 one-hour periods.       
                    W ~ B(24, part I answer)  
 
Required prob = P(W ≥ 20) = 1 – P(W ≤ 19) 
       = 0.937           
binomial, 0.936947, sensitive to i) answer used in 3 dp; 0.9361448 if 0.908 is used 
 
(iv)Let  U be number of nuisance calls received in 1 hour, and V be number of calls 
requesting for increase in credit limit in 1 hour.  
U ~ Po(24),    V ~ Po(12), and X ~ Po(18) (from part i))  
can be approximated by normal distributions 
 U ~ N(24, 24), V ~ N(12,12) and X ~ N(18,18) respectively since the Poisson means 
are more than 10.    
Hence, U – (X+V) approximately N(24 – (12+18), 24+12+18) 

                                     i.e. N(−6, 54)      
 
 
 
 
 
Required prob = P(U > X +V) = P( U – (X+V)) > 0)  
    = 0.188  (with c.c.)  or 0.207 (without c.c.)              
 
(v)Assumptions      

 Number of phone calls received of the various types are independent 

 Phone calls of the various types are mutually exclusive   
Not accepted – enough telephone operators to receive the calls (because the poisson 
distn is already on calls “received”) 

 


