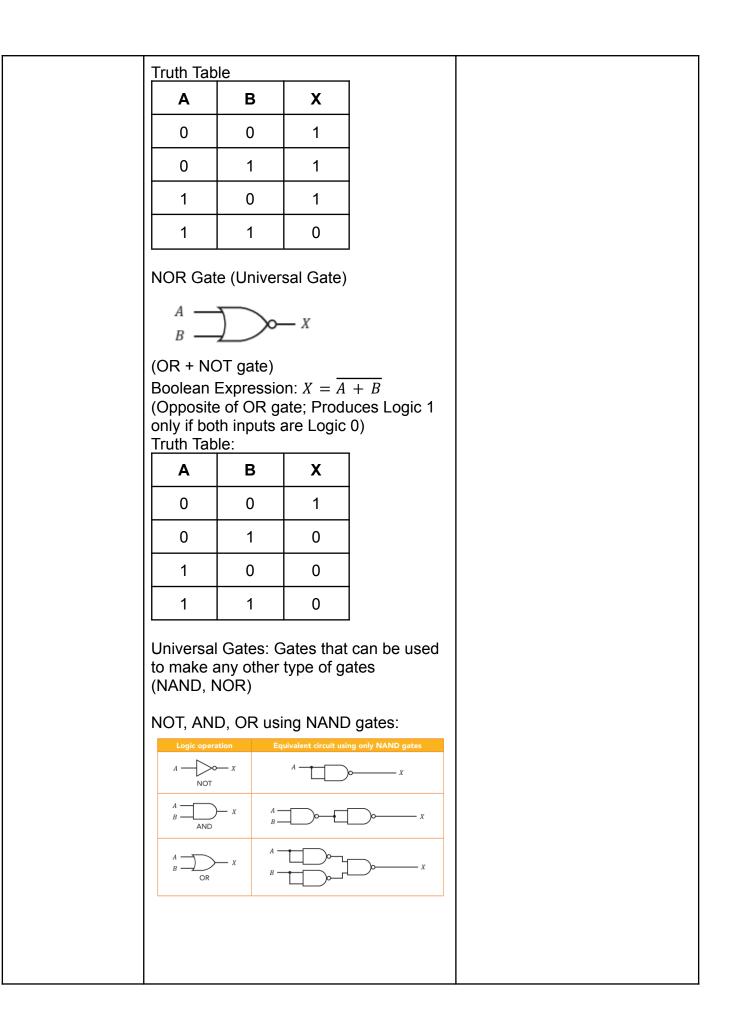
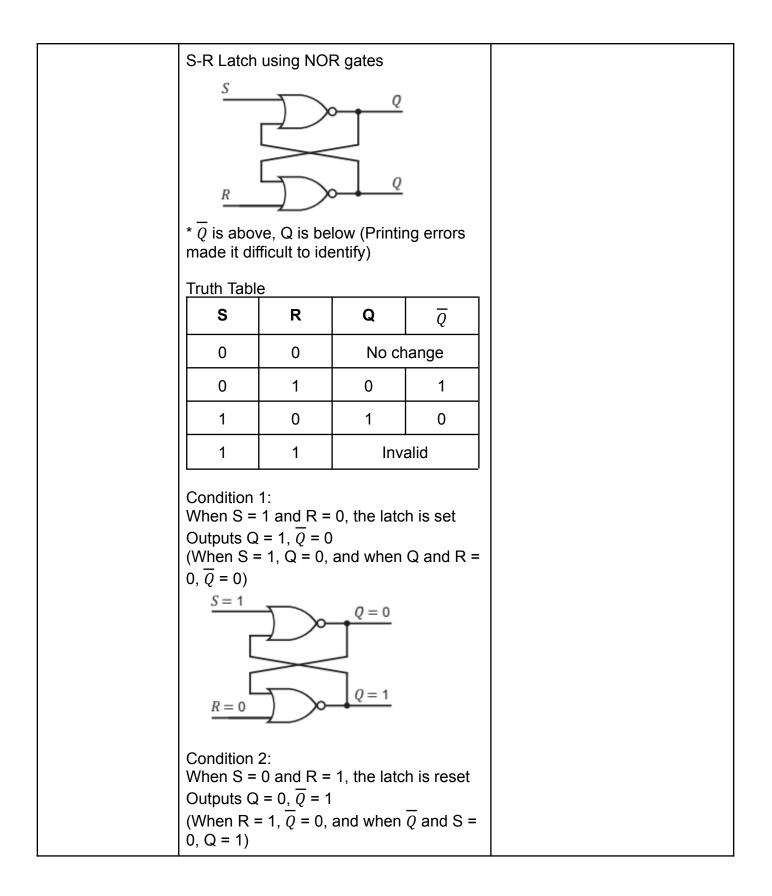
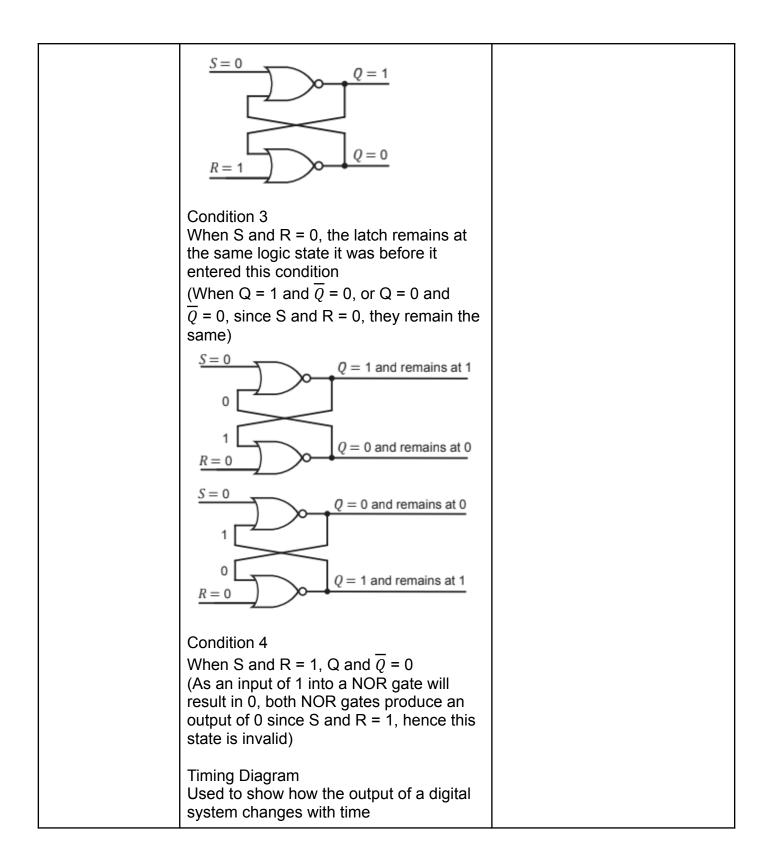

Electronics notes (Digital) (pm something3009 on discord if there are any errors)


Chapter	Content	Examples
Chapter 10: Introduction to Digital Electronics	Analogue quantities vary continuously while Digital quantities vary in steps How to differentiate between analogue and digital signals: Analogue signals: Has continuously varying Voltage levels Digital signals: Only has 2 distinct voltage levels (HIGH or LOW only) (HIGH refers to Logic 1 state (+5V), LOW refers to Logic 0 state (0V))	Analogue signals
	Logic Switches Pull-Up switch:	Pull-Up switch when closed: V_{cc} +5V GND = 0 output = logic 0 V_{cc} +5V R V_{cc} +5V R U V_{cc} +5V R U U V_{cc} +5V R U U U U U U U U

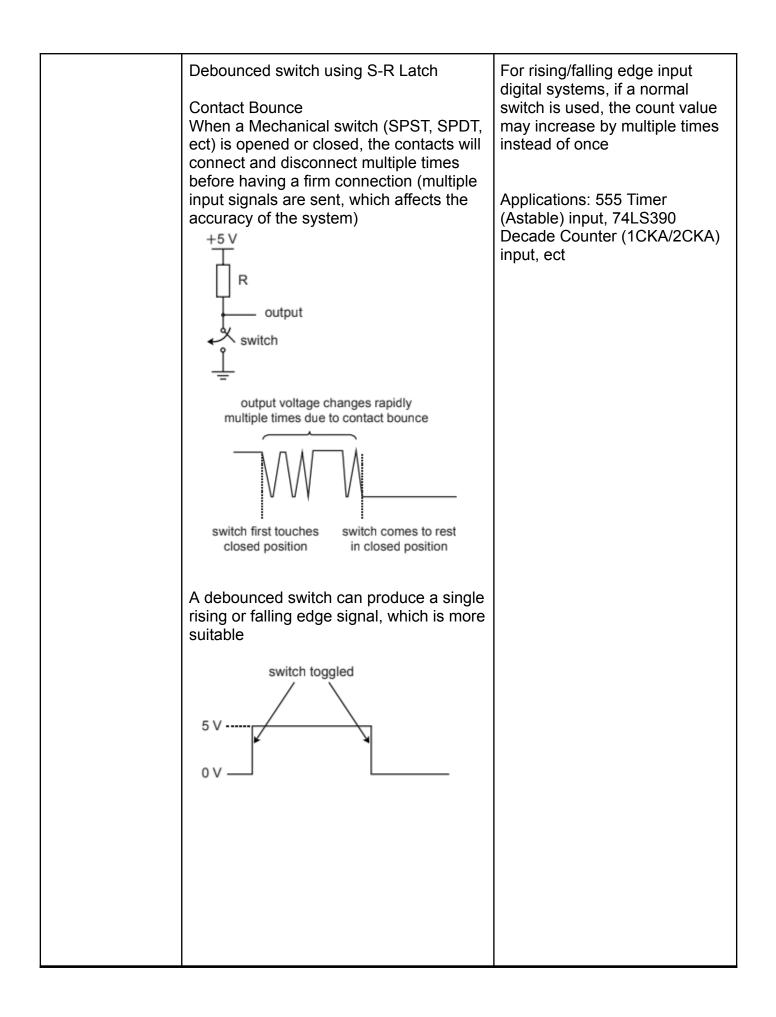
small area of s material (save Disadvantages: - Additional step convert betwee Digital signals our daily lives	an be squeezed into semiconductor	
quantities)How to represent and Digital FormDecimal System: Made up of 10 digits Position of a digit det valueBinary System: Made up of 2 digits (k Position of a bit deter value Highest place value - (MSB) Lowest place value - (LSB)* you can press calcu calculation parts in co binary and Vice VersaBinary-coded decimal Uses groups of 4-bit I represent the digits o (Coding system)Decimal number498163	(0-9) ermines its place bits) (0 and 1) mines its place Most Significant Bit Least Significant Bit llator to skip the powerting decimal to a	Converting between Binary, Decimal systems and BCD Binary to Decimal: 1100_2 = $(1x2^3)+(1x2^2)+(0x2^1)+(0x2^3)$ = $8 + 4 + 0 + 0$ = 12_{10} Decimal to Binary: 12_{10} $12 \div 2 = 6R0$ (LSB) $6 \div 2 = 3R0$ $3 \div 2 = 1R1$ $12 \div 2 = 6R1$ (MSB) $12_{10} = 1100_2$ Decimal to BCD: $387_{10} = 0011 \ 1000 \ 0111_{BCD}$ BCD to Decimal: $0101 \ 0110 \ 1001_{BCD} = 569_{10}$

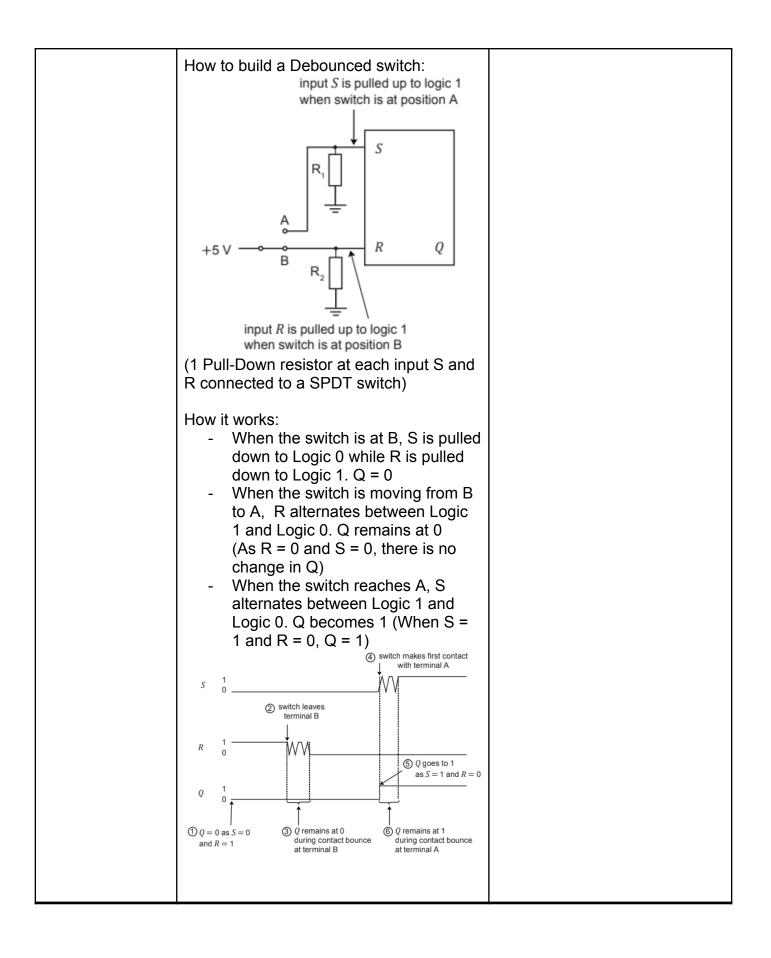
	 Advantages/Disadvantages of converting between Decimal and BCD Advantages: More straightforward to convert larger decimal number to BCD than to Binary Useful for displaying decimal numbers 	
	 Disadvantages: More bits are needed to store the same number in Binary BCD to 7-Segment Display: To display binary numbers in decimal form Insert BCD input into 7-segment decoder to convert BCD to a 7-segment code 	$\frac{\text{BCD to 7-Segment code Truth}}{\text{able}} \\ \frac{8 \text{CD }}{9 \text{ f } e \text{ d } c \text{ b } a} \frac{7 \text{-segment display}}{(\text{decimal digit})} \\ \frac{8 \text{CD }}{(\text{decimal digit})} \frac{7 \text{-bit binary code}}{1 \text{ 1 } 1 \text{ 1 } 1 \text{ 1 } 1 \text{ 1 } 0} \\ \frac{8 \text{CD }}{0000 \text{ 0 } 0 \text{ 1 } 1 \text{ 1 } 1 \text{ 1 } 1 \text{ 1 } 1 \text{ 0 } 0} \\ 0000 \text{ 0 } 0 \text{ 1 } 1 \text{ 1 } 1 \text{ 1 } 1 \text{ 1 } 1 \text{ 0 } 0 \\ 0001 \text{ 0 } 0 \text{ 0 } 0 \text{ 1 } 1 \text{ 1 } 1 \text{ 0 } 1 \text{ 0 } 0 \\ 0001 \text{ 1 } 0 \text{ 0 } 0 \text{ 1 } 1 \text{ 1 } 1 \text{ 0 } 1 \text{ 2 } 0 \\ 0011 \text{ 1 } 0 \text{ 0 } 1 \text{ 1 } 0 \text{ 1 } 1 \text{ 0 } 1 \text{ 1 } 2 \\ 0001 \text{ 1 } 1 \text{ 0 } 0 \text{ 1 } 1 \text{ 0 } 1 \text{ 1 } 0 \text{ 1 } 1 \text{ 5 } 0 \\ 0100 \text{ 1 } 1 \text{ 1 } 0 \text{ 1 } 1 \text{ 0 } 1 \text{ 5 } 0 \\ 0110 \text{ 1 } 1 \text{ 1 } 1 \text{ 1 } 1 \text{ 0 } 1 \text{ 5 } 0 \\ 0101 \text{ 1 } 1 \text{ 1 } 1 \text{ 1 } 1 \text{ 1 } 1 \text{ 9 } 0 \\ 0 \text{ 0 } 0 \text{ 0 } 0 \text{ 0 } 1 \text{ 1 } 1 \text{ 1 } 1 \text{ 0 } 0 \\ 0 \text{ 0 } 0 \text{ 0 } 1 \text{ 1 } 1 \text{ 1 } 1 \text{ 0 } 1 \text{ 0 } 0 \\ 0 \text{ 0 } 0 \text{ 0 } 1 \text{ 1 } 1 \text{ 1 } 1 \text{ 0 } 0 \\ 0 \text{ 0 } 0 \text{ 0 } 1 \text{ 1 } 1 \text{ 0 } 1 \text{ 0 } 0 \\ 0 \text{ 0 } 0 \text{ 0 } 0 \text{ 0 } 0 \text{ 0 } 1 \text{ 0 } 0 \\ 0 \text{ 0 } 0 \text{ 0 } 1 \text{ 0 } 1 \text{ 0 } 0 \\ 0 \text{ 0 } 0 \text{ 0 } 0 \text{ 0 } 0 \text{ 0 } 0 \\ 0 \text{ 0 } 0 \\ 0 \text{ 0 } 0 \text{ 0 } 0 \text{ 0 } 0 \text{ 0 } 0 \\ 0 \text{ 0 } 0 \text{ 0 } 0 \text{ 0 } 0 \text{ 0 } 0 \\ 0 \text{ 0 } 0 \text{ 0 } 0 \text{ 0 } 0 \text{ 0 } 0 \\ 0 \text{ 0 } 0 \\ 0 \text{ 0 } 0 \\ 0 \text{ 0 } 0 \\ 0 \text{ 0 } 0 0$
Chapter 11: Basic Logic Gates	Logic Gates Components with 1 or more inputs and 1 output of either Logic 1 or Logic 0 depending on the Logic gate Truth Table A way to show the outputs of a Logic gate for all possible input combinations (Input combinations are arranged in binary from smallest to biggest) Common Logic Gates NOT Gate $A \longrightarrow X$ Boolean Expression: $X = \overline{A}$ (Inverts the Input) Truth Table $\boxed{A X}$ 0 1 1 0	A X 0 1 1 0

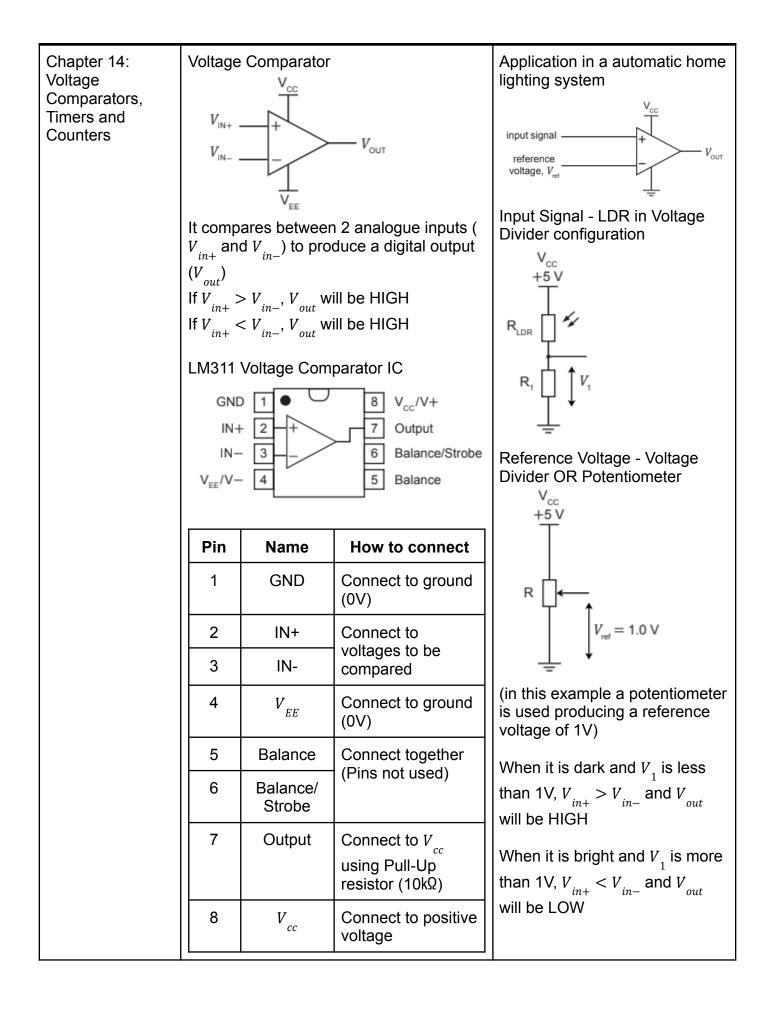


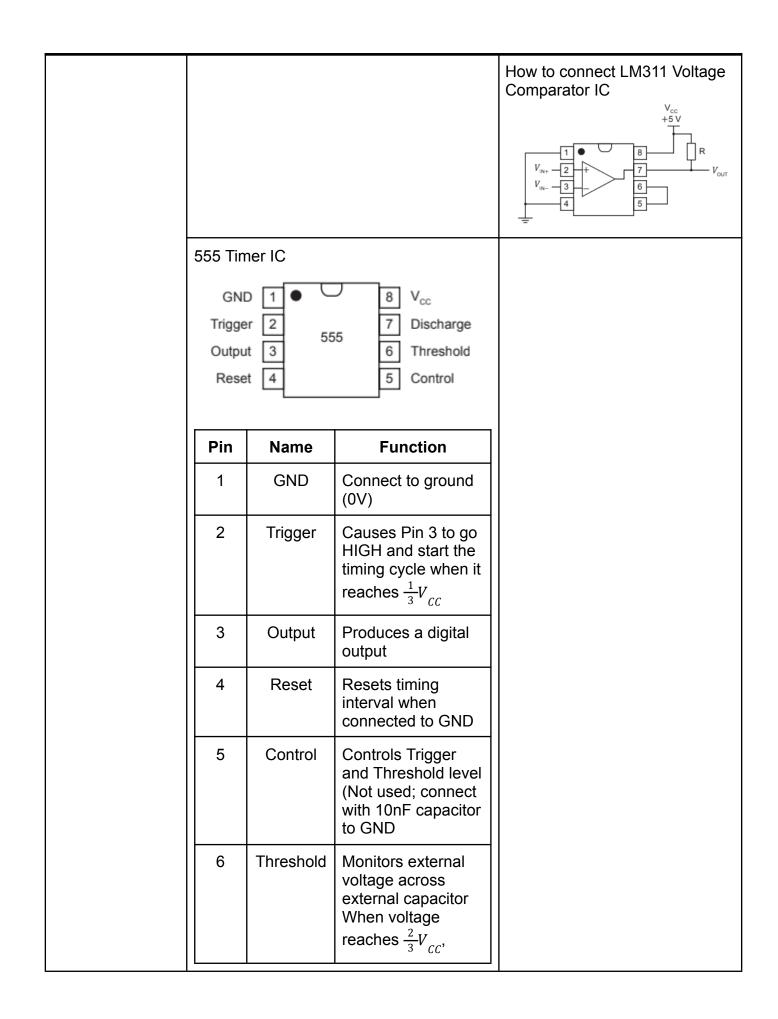

	NOT, AND. OR using NOR gates: Logic operation Equivalent circuit using only NOR gates				
	$A \xrightarrow{B} \longrightarrow X$ $A \xrightarrow{B} \longrightarrow X$ $A \xrightarrow{B} \longrightarrow X$				
	Dual-In-Line (DIL) ICs Identifying pins: 1 14 2 13 3 12 4 11 5 10 6 7 8 Pin 1 - Beside Dot and Notch * Refer to Datasheet for DIL IC connections, ratings and characteristics	Key DIL 74LS00 74LS02 74LS04 74LS08 74LS11 74LS32 74LS47 decoder 74LS39 NE555 LM311	- 2 inpu - 2 inpu - NOT g - 2 inpu - 3 inpu - 2 inpu - BCD t	t NOR g gate t AND g t AND g t OR ga t OR ga o 7-Seg ade Cou ner	ate ate te ment nter
Chapter 12: Combinational Logic Circuits	Describing a Logic Circuit To create Truth Table:	When A When A Truth Ta	. = 0, C =	•	
	 Determine number of Rows (Number of possible input 	A	В	С	X
	combinations) and Columns (Number of inputs, intermediate	0	0	0	0
	signals and outputs)	0	0	1	1
	2. Draw and fill up the inputs of the Truth Table	0	1	0	0
	 Work out the intermediate signals and outputs 	0	1	1	1
	Boolean Expression	1	0	0	0
	To express the outputs of an Truth Table (sum-of-product expression) (SOP)	1	0	1	0
	・- Product (multiply)	1	1	0	1
	+ - Sum (add up) \overline{X} - Inverse	1	1	1	1

	ر ۱
	SOP expression:
	$X = \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot C$
	$+ A \cdot B \cdot C + A \cdot B \cdot C$
Converting Boolean expression into Logic Circuit	$X = \overline{A} \cdot C + B + A \cdot \overline{B} \cdot C$
Step 1: Draw a Logic circuit for each AND term Step 2: Connect the outputs to the inputs of an OR Gate	$B \xrightarrow{X = \overline{A} \cdot C + B + A \cdot \overline{B} \cdot C}$
Karnaugh Map (K-map) To simplify SOP expressions to reduce number of gates required, saving costs	$X = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot C$
and reducing errors	A 3-input K-Map will be used
Step 1. Prepare K-Map 2-Input:	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1	Simplified SOP expression: $X = \overline{B} + A \cdot \overline{C}$
3-Input:	
A 00 01 11 10 0 1 11 10 1 Note that the numbers for BC are	(p.s. K-Map is easier in my opinion)
arranged as 00 01 11 10)	
Step 2: Input information into K-Map	
 Step 3: Loop the 1s in the K-Map Loop in groups of 2 or 4 or individually Only loop 1s that are adjacent to each other First and Last column are considered adjacent to each other 	
Step 4: Obtain the simplified Boolean expression by identifying the common inputs	

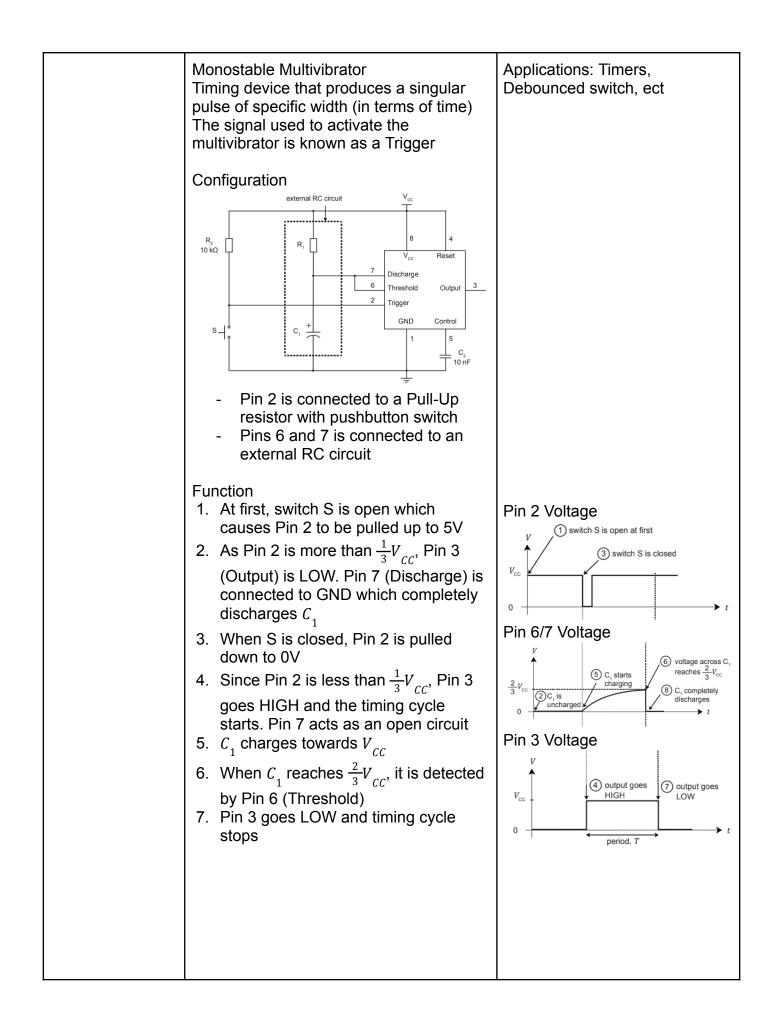

 			<u></u>
number of gate and reducing er Boolean Laws * Laws given in	P exp s req rrors	ressions to reduce uired, saving costs asheet	$X = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C$ + $A \cdot B \cdot C$ Using Boolean Algebra, $X = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{B} \cdot C + A \cdot \overline{B} \cdot \overline{C}$ = $\overline{A} \cdot \overline{B} \cdot (\overline{C} + C) + A \cdot \overline{B} \cdot \overline{C}$ = $\overline{A} \cdot \overline{B} \cdot 1 + A \cdot \overline{B} \cdot \overline{C}$ = $\overline{A} \cdot \overline{B} + A \cdot \overline{B} \cdot \overline{C}$ = $\overline{A} \cdot \overline{B} + A \cdot \overline{B} \cdot \overline{C}$ = $\overline{B} \cdot (\overline{A} + A \cdot \overline{C})$ Apply distributive law Apply distributive law
One Variable:	1		$= \overline{B} \cdot (\overline{A} + \overline{C})$ $= \overline{A} \cdot \overline{B} + \overline{B} \cdot \overline{C}$ Apply distributive law Apply distributive law
Law	ļ	Explanation	
$\overline{\overline{A}} = A$		$= 0, \overline{\overline{0}} = \overline{1} = 0$ vice versa	(Same answer as K-Map)
A + 0 = A	Add	ling a 0	
A + 1 = 1		swer will always ome 1	
A + A = A		= 1, result is 1 = 0, result is 0	
$A + \overline{A} = 1$	Eith	her A or $\overline{A} = 1$	
$A \cdot 0 = 0$	Mul	tiply by 0	
$A \cdot 1 = A$	Mul	tiply by 1	
$A \cdot A = A$		= 1, result is 1 = 0, result is 0	
$A \cdot \overline{A} = 0$		her A or \overline{A} = 0, hence tiply by 0	
Two or more va	riable	es:	
Law		Туре	
A + B = B +	<i>⊢ A</i>	OR commutative law	
$A \cdot B = B \cdot$	Α	AND commutative law	
A + (B + C) $= (A + B) + C$	-	OR associative law	
$\begin{array}{c} A \cdot (B \cdot C) \\ = (A \cdot B) \cdot \end{array}$		AND associative law	

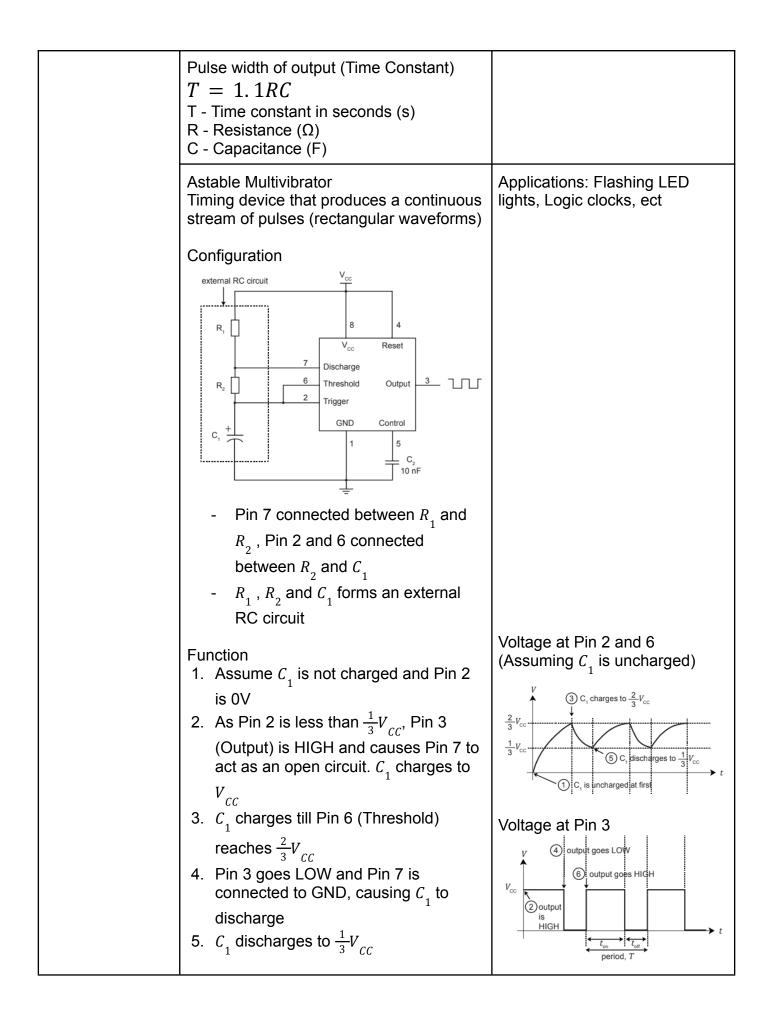

	·		
	$= A \cdot B + A \cdot C$	istributive Laws	
	$(A + B) \cdot (C + D)$ = $A \cdot C + A \cdot D$ + $B \cdot C + B \cdot D$		
	$\begin{vmatrix} A + A \cdot B = A \\ A \cdot (A + B) = A \end{vmatrix}$ All	bsorption Laws	
	$\begin{array}{l} A + \overline{A} \cdot B \\ = A + B \end{array}$		
	$\begin{array}{c} A \cdot (\overline{A} + B) \\ = A \cdot B \end{array}$		
	$\overline{\frac{A \cdot B}{A + B}} = \overline{A} + \overline{B}$	De Morgan's Theorem	just do K-Map its easier trust me
	Using Combinational Log real-life problems	gic to solve	Repeat the above examples using the context given within the question
	Step 1: Create Truth Tab unsimplified boolean exp		* ONLY PICK ONE METHOD WHEN SIMPLIFYING SOP
	Step 2: Use K-Map OR E to get a simplified boolea		
	Step 3: Create the circuit simplified boolean expres		
Chapter 13: Set-Reset Latches	An S-R Latch is a device Logic state (1 or 0)	e that can store a	
	S-R Latch symbol		
	S R	Q Q	

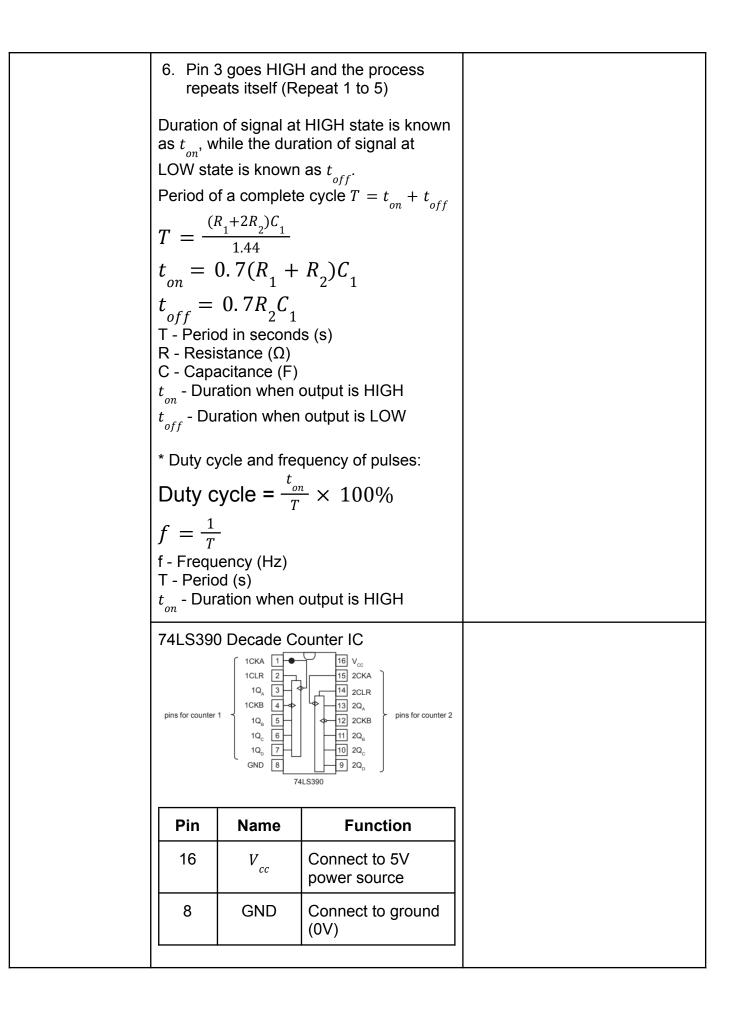


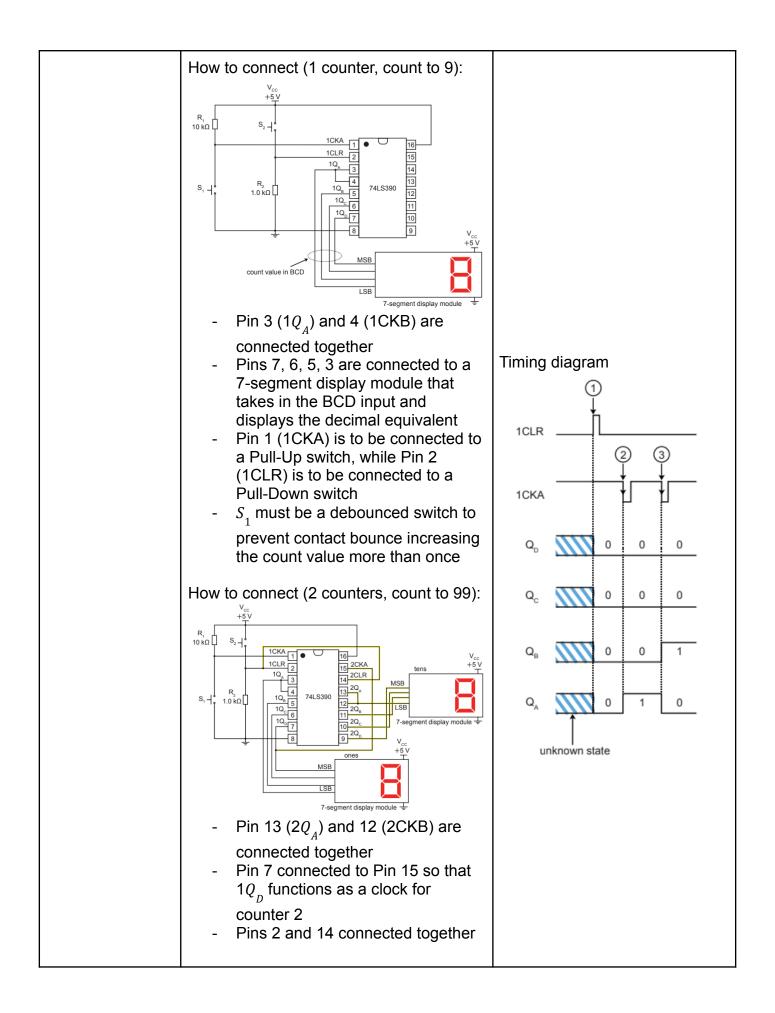


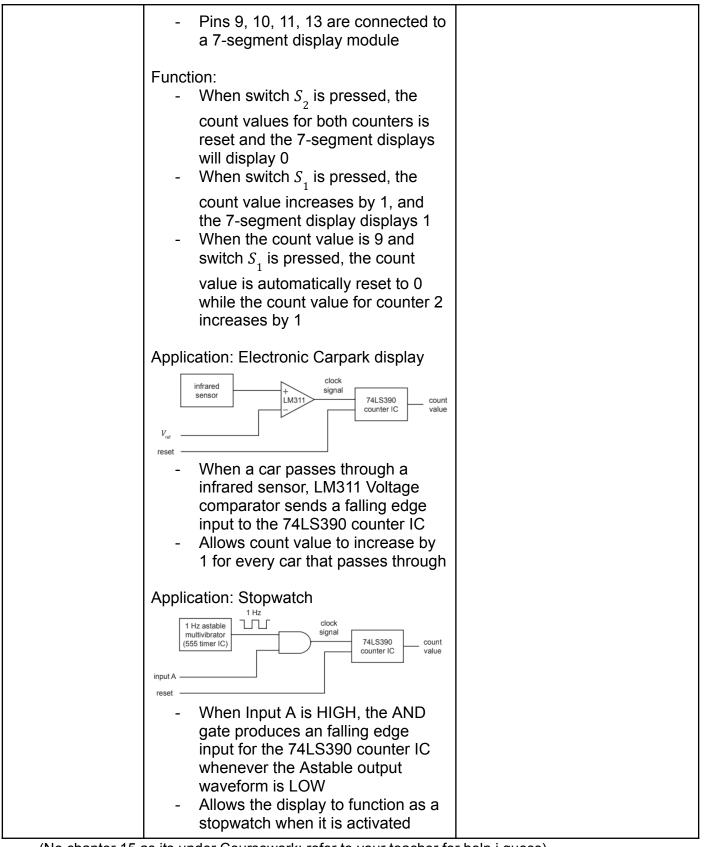
	· · · · · · · · · · · · · · · · · · ·
S 0 1 0 0 0	
R 0 0 0 1 0	
Q 1 1 0 0	
$t_0 t_1 t_2 t_3$ At t_0 , S = 1 and R = 0, Q = 1 (Condition 1)	
At t_1 , S = 0 and R = 0, Q remains at 1 (Condition 3) At t_2 , S = 0 and R = 1, Q = 0 (Condition 2) At t_3 , S = 0 and R = 0, Q remains at 0 (Condition 3)	
(Condition 3) Applications for S-R Latch - Systems that require an momentary occurrence to be converted into an constant output (eg Intruder Alarm System, Traffic Light, ect)	Intruder Alarm System without S-R Latch with opens window opens window opens window opens witch (The intruder can close the window to disable the alarm system) Intruder Alarm System with S-R Latch $\downarrow \downarrow \downarrow \downarrow$ $\downarrow \downarrow \downarrow$ $\downarrow \downarrow \downarrow$ $\downarrow \downarrow \downarrow$ $\downarrow \downarrow \downarrow$ $\downarrow \downarrow$ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow








		timing cycle ends and Pin 3 goes LOW
7	Discharge	Connects to GND and discharges external capacitor when output is LOW, acts as an open circuit when output is HIGH
8	V _{cc}	Connect to positive voltage (between 5V to 15V)
Pin lav	yout diagram	
	8	4
	V _{cc}	Reset
7	Discharge	
6	Threshold	Output 3
2	Trigger	
	GND	Control
	1	5
		an function as a stable Multivibrator
	ence between	
M	onostable	Astable
creat recta	n triggered, e a single ngular pulse edetermined	Creates a rectangular waveform without the need of a trigger
deter exter	e width is mined by nal capacitor esistor	Period is determined by external capacitor and 2 resistors
	Monostable a given in Data	and Astable formulas sheet



1, 151CKA, 2CKAClock A input pins for counter 1 and 2 respectively. Increases count value by one for every falling edge2, 141CLR, 2CLRClear input pins for counter 1 and 2 respectively. Resets the count value to zero when it is HIGH.4, 121CKB, 2CKBClock B input pins for counter 1 and 2 respectively. Resets the count value to zero when it is HIGH.4, 121CKB, 2CKBClock B input pins for counter 1 and 2 respectively.7, 6, 5, 31Q_{D}, 1Q_{C}, 1Q_{B}, 1Q_{A}Output pins for counter 1, to represent count value as BCD code where 1Q_{D} is the most significant bit (MSB) while 1Q_{A} is the least significant bit (LSB)9, 10, 11, 132Q_{D}, 2Q_{C}, 2Q_{B}, 2Q_{A}Output pins for counter 2, to represent count value as BCD code where 2Q_{D} is the most significant bit (MSB) while 2Q_{A} is the least significant bit (MSB) while 2Q_{A} is the least significant bit (LSB)Count sequenceEvent $\frac{4 + 4 + 60}{0}$ $\frac{0}{0}$ $\frac{1}{0}$ $\frac{1}{1}$ <td< th=""></td<>
2CLRcounter 1 and 2 respectively. Resets the count value to zero when it is HIGH.4, 121CKB, 2CKBClock B input pins for counter 1 and 2 respectively.7, 6, 5, 3 $1Q_D, 1Q_C,$ $1Q_B, 1Q_A$ Output pins for counter 1, to represent count value as BCD code where $1Q_D$ is the most significant bit (MSB) while $1Q_A$ is the least significant bit (LSB)9, 10, 11, 13 $2Q_D, 2Q_C,$ $2Q_B, 2Q_A$ Output pins for counter 2, to represent count value as BCD code where $2Q_D$ is the most significant bit (MSB) while $2Q_A$ is the least significant bit (MSB) while $2Q_A$ is the least significant bit (LSB)Count sequence $\frac{4-bit BCD}{0}$ 0 0 $\frac{4-bit BCD}{0}$ 0 1 $\frac{1}{0}$ 0 1 1 $\frac{1}{0}$ 1 1 $\frac{1}{0}$ 1 1 $\frac{1}{1}$ 0 0 $\frac{1}{1}$ 1 1 $\frac{1}{1}$ 0 0 $\frac{1}{1}$ 0 0
2CKBfor counter 1 and 2 respectively.7, 6, 5, 3 $1Q_D, 1Q_C,$ $1Q_B, 1Q_A$ Output pins for counter 1, to represent count value as BCD code where $1Q_D$ is the most significant bit (MSB) while $1Q_A$ is the least significant bit (MSB) while $1Q_A$ is the least significant bit (LSB)9, 10, 11, 13 $2Q_D, 2Q_C,$ $2Q_B, 2Q_A$ Output pins for counter 2, to represent count value as BCD code where $2Q_D$ is the most significant bit (MSB) while $2Q_A$ is the least significant bit (LSB)Count sequence $\frac{4-500}{0}$ $\frac{4-500}{0}$ $\frac{0}{0}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{1}$
Image: construction of the co
Value as BCD code where $2Q_D$ is the most significant bit (MSB) while $2Q_A$ is the least significant bit (LSB) Count sequence $\frac{4-bit BCD}{0}$ Decimal equivalent bit (LSB) 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 3 0 1 3 0 1 3 0 1 3 0 1 4 0 1 3 0 1 3 0 1 3 0 1 3 0 1 3 0 1 3 0 1 3 0 1 3 0 1 4 0 1 3 0 1 3 0 1 3 1 3 4 <
$\begin{tabular}{ c c c c } \hline A-bit BCD & $Decimal equivalent$ \\ \hline Q_{o} & Q_{c} & Q_{A} & O-constant O & O-constant O & O-constant O-consta$
$\begin{tabular}{ c c c c c } \hline $Q_{\rm o}$ & $Q_{\rm c}$ & $Q_{\rm a}$ & $Q_{\rm A}$ & ${\rm Pecimal equivalent}$ \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 & 1 & 1 \\ \hline 0 & 0 & 1 & 1 & 0 & 2 \\ \hline 0 & 0 & 1 & 1 & 3 \\ \hline 0 & 1 & 0 & 0 & 4 \\ \hline 0 & 1 & 0 & 0 & 4 \\ \hline 0 & 1 & 0 & 1 & 5 \\ \hline 0 & 1 & 1 & 0 & 6 \\ \hline 0 & 1 & 1 & 1 & 7 \\ \hline 1 & 0 & 0 & 8 \\ \hline \end{tabular}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
0 0 1 0 2 0 0 1 1 3 0 1 0 0 4 0 1 0 1 5 0 1 1 0 6 0 1 1 7 1 0 0 8
0 0 1 1 3 0 1 0 0 4 0 1 0 1 5 0 1 1 0 6 0 1 1 7 1 1 0 0 8
0 1 0 1 5 0 1 1 0 6 0 1 1 7 1 0 0 8
0 1 1 0 6 0 1 1 1 7 1 0 0 0 8
1 0 0 0 8
A second s

(No chapter 15 as its under Coursework; refer to your teacher for help i guess) (here are some tips tho: always look up the datasheet and pin diagrams of all the components ur using, ensure that your circuit is functioning properly before testing and ensure all necessary information have been taken down before moving on to the next section)