NAME:	()	CLASS:	
YISHUN TOWN	SECONDA	ARY S	CHOOL	
PRELIMINAR	Y EXAMINAT	TION 202	21	
SEC	4 EXPRESS	3		
CH	HEMISTRY			
	(6092/2)			
DATE : 25 Aug 2021			DAY :	Wednesday
DURATION: 1 hr 45 min				80 marks
Write your name, class and register number in Section A Answer all the questions.	the spaces pro	vided at th	ne top of this	s page.
Write your answers in the spaces provided.				
Section B				
Answer three questions. Question B9 and B10 Write your answers in the spaces provided.	are compulsor	y. Choose	e one quest	ion from B11.
INFORMATION FOR CANDIDATES The number of marks is given in brackets [] at	the end of eac	h question	n or part que	estion.
You may use an approved calculator.				
A copy of the Periodic Table is printed on the la	est page.	[5	Section A	
		5	Section B	

This question paper consists of 17 printed pages, including the cover page

TOTAL

SECTION A Answer all the questions in the spaces provided.

A1		hwing list of ions to answ han once or not at all.	er the questions below. Ea	icii substance	Cai
	hydroxide	copper (II)	carbonate	iron (II)	
	nitrate	ammonium	hydrogen	iodide	
	Choose one ion from	the list above which			[5
(a)	is responsible for the	alkaline properties of an	alkali.		
(b)	forms a blue precipita	te when added to aqueo	us sodium hydroxide.		_
(c)	when added to acid for	rms a gas.			
(d)	when added to alkali f	orms a gas.			_
(e)	forms a brown solution	when added to aqueou	s chlorine.		_

The diagram below shows the structure of an atom. The electrons are missing.

(a) Complete the table below about the three particles found in this atom.

[2]

[1]

Particle	Name of particle	Relative mass of the particle	Relative charge on the particle
0		1	
	was a second of the second of	1	+1
×	electron		-1

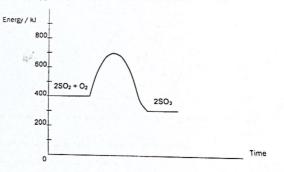
Complete the diagram to show the arrangement of the electrons in the atom.

Write the chemical symbol of this element in the form $^{\star}_{z}X$ showing clearly the nucleon number and proton number. [1]

A3 The following information is given for the chlorides of some elements in Period 2. The elements are labelled W, X, Y and Z.

Element	Formula of chloride	Melting point /°C	Boiling point /°C
W	WC/2	714	1418
X	XC/	790	1407
Y	YC/2	-80	138
Z	ZC/4	-70	58

Describe the	movement and arrangement of the particles of YC/2 at -50 °C.	1
Explain how	and why the melting points of XCI and ZCI4 are different.	


A4 The table gives some data about three fuels that are currently used in the world today.

Fuel	Gas	formed on burn	ning
	Carbon dioxide	Sulfur dioxide	Water vapour
Petrol	1		V
Diesel	1 1		√
Coal	√	√	√

(a) Explain why coal is said to be a bad fuel compared to petrol and diesel.

[2]

(b) The diagram shows the energy profile diagram for the formation of sulfur trioxide from sulfur dioxide and oxygen. This reaction is a reversible reaction. [2]

- State the activation energy of the reaction and label Ea on the graph.
- (ii) State the enthalpy change of the backward reaction.

		-	
)	Some information on other type of fuels used is shown in the table below	w.	

Name	Formula	Physical state at rtp	Enthalpy change of combustion / kJ per 100 g
Ethanol	C ₂ H ₅ OH	Liquid	- 2972
Propane	C ₃ H ₈	Gas	- 5045

S

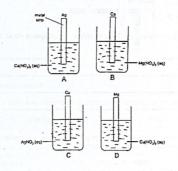
Calculate the amount of energy given out when 2.5 mol of ethanol is burnt. [2]

ii)	Describe one advantage of using ethanol as a fuel compared to propane.			

The table below shows the percentage of nitrogen and carbon monoxide present in air and in the exhaust furnes of a car without and with a catalytic converter.

		Percentage by vol	ume
		Exhaust fum	es of car
Gas	Air	Without catalytic converter	With catalytic converter
N ₂	78	76	77
CO	0	0.2	0

In the catalytic converter, the following reactions take place.


Reaction 1: 2NO (g) \rightarrow N₂(g) + O₂(g) Reaction 2: 2CO (g) + O₂(g) \rightarrow 2CO₂(g)

on given, account for the difference between the percentage of nitrogen khaust fumes of a car without a catalytic converter, and the difference ntage of nitrogen in the exhaust of a car with and without a catalytic [3]
The state of the s

(i) Write the overall chemical equation for the reaction that takes place in the catalytic (b) converter. (ii) Explain using oxidation states, why CO is acting as the reducing agent in the overall reaction.

A student suggested removing CO by passing the gas through calcium carbonate. State with a reason whether this suggestion will work.

A6(a) A series of experiments was set up as shown in the diagram below. The metal strips are in

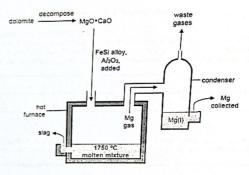
Construct an ionic equation for any one of the beakers that has a reaction.

[2] Describe two observations made for beaker D.

Scanned with CamScanner

(iii) In beaker C, the copper strip was replaced with aluminium. No reaction was observed. Explain why aluminium does not react. [1]	(b)	The gas evolved in flask A was recorded every 30 seconds and a graph of volume of gas produced against time was plotted as shown below.
		Volume of gas
Brass is an alloy containing a mixture of zinc and copper. With the aid of a diagram, explain why this alloy is strong. [3]		Plack A
		Sketch on the same graph above, the rate curve obtained for flask ${\bf B}$ and flask ${\bf C}$ each. Label your graphs clearly. [2]
		In another similar experiment, the magnesium ribbons were replaced with the same mass of magnesium powder. Explain, in terms of collisions between particles how this affects the rate of reaction.
A student carried out a few experiments to investigate the effect of concentration on the reaction between acids and magnesium metal. A 15.0 cm length of magnesium ribbon was added to each of the following flasks. At the end of the experiment, small bits of magnesium ribbon were found to be left in each flask.		
Flask A: 100.0 cm ³ of 0.1 mol/dm ³ hydrochloric acid		
Flask B: 100.0 cm³ of 0.1 mol/dm³ sulfuric acid	AS	The diagram below shows an electrolytic cell A and a simple cell B.
Flask C: 100.0 cm ³ of 0.1 mol/dm ³ ethanoic acid		Δ <u>Β</u>
Comparing flask A and B, explain which flask contains the lower concentration of hydrogen ions.		
		Copper Copper Zinc
		Copper(II) sulfate solution Copper(II) sulfate
	(a)	Write the ionic equation, with state symbols, for the reactions that take place at
		(i) the anode in cell A :
		(ii) the positive electrode in cell B:
7		
		8

	•	20,	
Describe one common observation	ı that would be seen i	in both cells.	[1]
Describe one observation that wo Explain your answer.	uld only be seen in the	e electrolyte of cell B but	t not in cell A.


SECTION B

Answer all three questions in the spaces provided.

B9 Extraction of magnesium

Magnesium is found in nature as the ore, dolomite, MgCO3*CaCO3. Dolomite contains 75% magnesium carbonate.

To extract magnesium from its ore, the following steps in an industrial extraction process are employed, as shown in the diagram below.

Step 1: Decomposition

The dolomite ore is first decomposed to produce a mixture of magnesium and calcium oxides:

$$MgCO_3 \cdot CaCO_3$$
 (s) $\rightarrow MgO \cdot CaO$ (s) + $2CO_2$ (g)

Step 2: Reduction

The oxides prepared in **Step 1** are then mixed with an alloy of iron and silicon, ferrosilicon (FeSi), and loaded into the furnace. In this furnace, reduction of the magnesium oxide takes place but not calcium oxide.

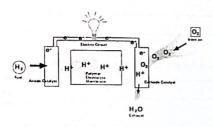
2MgO (s) + Si (s)
$$\implies$$
 SiO₂ (s) + 2Mg (g)

Small amounts of aluminium oxide may also be added to decrease the melting point of the slag. The reaction is carried out at 1750 °C and under very low pressure. Under these conditions, the magnesium is produced as a gas, which is then condensed in a cooling chamber, and collected as metal blocks. The magnesium obtained has a 95% purity.

Step 3: Removal of impurities

The molten slag formed is calcium silicate and is removed from the molten magnesium.

(a)	Calculate the maximum mass of magnesium that can be produced from 112 tonnes of dolomite. [1 tonne = 1000 000g] [4]	B10	Electronegativity	is a measure	ip I and Group VII elements of the ability of an atom tom, the greater is its ability.	ments are given in the to to attract an electron. The ity to attract electrons.	able below greater the
				Element	Atomic Radius / pm	Electronegativity	
			Group I	Lithium Sodium	152 185		
			Greap !	Potassium	227		
			the real real	Chlorine	99	3.16	
			Group VII	Bromine	115	2.96 2.66	
			D	lodine	156		
		(a)	Predict the trend	in the electrone	egativity of the Group I e	lements down the group.	[1]
(b)	What can you infer about the relative reactivities of magnesium, calcium and silicon from the extraction process? Explain your answer.	(b)			orer oxidizing agents do		
	[3]		statement.	trend in the	atomic radius of the	Group VII elements sup	ports this
				Yang.			
(c)	Suggest how the aluminium oxide added helps to lower the melting point of the slag. [1]	(c)	Aithough Group I a Describe one simil metals.	and transition e arity and one d	lements are metals, they ifference in the physical	have different physical properties of Group I and	properties. transition
(d)	Explain with reason one advantage of using a FeSi alloy with a higher proportion of Si. [2]				- AT M - AND - A		
		(d)	When chlorine cas	is passed into			
			to orange-red. Wh leaving a yellow s hydroxide is added	en the orange olution. A red to this yellow:	red solution (II) bromide red solution is heated dish brown precipitate solution.	e, the colour of the solution it gives off a reddish-t is formed when aqueo	on changes brown gas
(e)	Other than calcium oxide, silicon dioxide and calcium silicate, suggest another impurity that		(i) Identify the r	eddish brown	gas and the yellow solu		
	could be present in the molten magnesium. [1]		Reddish bro	wn gas:	and the yellow solu	tion.	[1
(f)	Explain how slag (calcium silicate) is formed during the extraction process. [1]		Yellow solut	ion :		S. C. Nacional Control	
	- 11						
					12		
				2			and the same of th
	responsibles of electricity as they both exist. [1]					and the same of th	REAL PROPERTY.
	TALL TO STANDARD OF AN ARCHITECTURE AS THE WORLD TALL TALL TALL						


(ii)	Explain how the o	range red solution and the yellow solution is formed.			[2]	(c)		What can you infer about the reactivity of metal P compared t answer.
							(ii)	Hence, suggest a possible identity of metal P .
EITHER						(d)	Wher	n a student used calcium as electrode B, after some time, he not ng in the electrolyte. Explain the observation.
The		by different combin	electrode B	eand ectrodes are shown in	the table	(e)	With	reference to the particles present in each structure, describe how th
belo	w.	475						
	Experiment	Electrode A	Electrode B	Voltage / V				
	1	copper	zinc	1.10 0.48				
	2	copper	tin	2.70				Company was placed by a probability of the control
	3	copper	magnesium	0.78				
	5	copper	metal P	-0.46				
ansv	ver.	ne table to deduce	e the order of reac	gative electrode? Ex				
a9								

[1]

OR

B11 Growing demand for alternative forms of energy that are clean and efficient has led to the rising popularity of commercial fuel cell vehicles powered by hydrogen.

A typical fuel cell found in hydrogen powered cars is shown below. The overall chemical equation for the reaction in the fuel cell is given below:

(a) Using only information from the diagram, deduce the ionic half equations that occur at each electrode. State symbols are not required.

Cathode:

Anode:

Assudent claimed that "Hydrogen is only as clean as the fuel source used to produce it."

Explain what the student meant.

[2]

(c) A hydrogen fuel cell car can travel 199 km per kg of hydrogen. If the volume of hydrogen available in the gas tank is 60000 dm³, what distance can the car travel? [2]

(d) Hydrogen is also used as a raw material in the Haber process. In the Haber process, ammonia gas is produced. The following graph shows the amount of ammonia present in the equilibrium mixture under different conditions of temperature and pressure.

	70 T	T						=
percentage of	60-		35	0.0	7			_
ammonia In	50-			4	90°C	$\overline{}$		
equilibrium mixture	40-	1			450	2	.5.	
	30-	X		\neg		7		
	20-	11/			7		550	C
	10-			\neg	\neg			

(i)	State the source of hydrogen and nitrogen used in the Haber process. [1]
	Hydrogen:
	Nitrogen:
(ii)	What is the effect of increasing the pressure on the percentage of ammonia in the equilibrium mixture? [1]
(iii)	Suggest one advantage and one disadvantage of using 450°C rather than 350°C as the working temperature for the manufacture of ammonia. [2]
	the Working temperature for the manufacture of anniholita.
	present extending from the control
	1.

The Periodic Table of Elements

								G	roup								
	1 11											[1]] ·V] v	J VI	VI	
				Key			H hydrogen										H
3 L: 14. v · 7	Be bentur 9		ato	(atomic) : omic sym rame ve atomic	bol			•				B buton	C carbon	7 N nitroger	8 O 62 ppen 16	9 F 'bonne 19	No rec
Na rodum 23	Mg magnesian 24											A!	14 Si	15 P propioso	16 S	17 Ci chlorhie	18 Ar
19 K otcasour 39 37 Rb ubidi, m 85 55 Cs seerum 133 67 Fi Iranctum —	20 Ca cetca m 40 38 Sr stronta m 86 Be banuar 137 88 Ra radium	21 SC scandarm 45 39 Y yttrum 89 57 - 71 bartharcids	22 Ti Identium 48 40 Zr Zrzonium 91 72 Hr Indrium 178 104 Ruertonoum	V venerium 51 41 Nb riobium 93 73 Ta lantaum 181 105 Db dubnium	24 Cr cwonius. 52 42 Mo relytoken: 96 74 VV hrigiden 164 106 Sg seabortum	25 Mn " angunese 55 43 TC sech setion 75 Re the right 186 107 Bh borytor	26 Fe iron 56 44 Rusubsnion 101 76 Os os	27 Co cobat 59 45 Rh ihodium 103 77 Ir Industria 192 109 Mtl mothersum	28 Ni nicke 59 48 Pd paladhum 106 78 Pt plahnum 195 110 Ds derreledaum	29 Cu copper 64 47 Ag silver 108 79 Au gold 197 111 Rg receiped in	30 Zn zinc 55 48 Cd cdmur. 112 80 Hg recorv 201 112 Cn	27 31 Ga pebum 70 49 In maium 115 81 T! trastum 204	26 32 Ge or menur 73 50 Sn hn 116 52 Pb lood 207 114 F/ ferov ura	31 23 As 75 51 55 80 80 80 80 80 80 80 80 80 80 80 80 80	27 34 Se verification 79 52 Te interior 128 64 Po potential Lv	35 5 35 B1 browne 80 53 1 127 84 A1 astains	40 36 Kr kryp: 84 54 Xe sent: 131 86 Rn
1	actinoids		57 La lenthanum 139 89 Ac	58 Ce 22 im 140 90 Th	59 Pr seasodynum 141 91 Pa	80 Nd neodynlim 144 92 U	61 Pm prometham 93 Np	62 Sm sanstran 150 94 Pu	63 Eu surceium 152 65 Arti	64 Gd podokna,m 157 96 Cm	65 Tb terorum 159 97 Bk	66 Dy cyaprosium 163 98 Cf	67 HO ho:mlum 165 99 Es	66 Er erbium 167 100 Fm	69 Tim bulara 169 101 Md	70 Yb ylletum 173 102 No	71 Lij Metum 175 103 Li

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).