

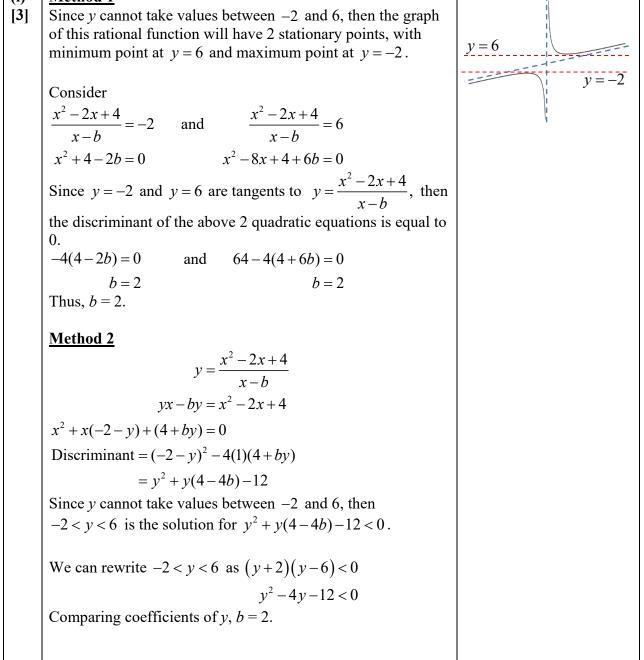
1

2024 Y6 H2 Math Timed Practice Revision Paper 4 Solution

The curve *C* has equation
$$y = \frac{x^2 - 2x + 4}{x - b}, x \neq b$$

- (i) Given that y cannot take values between -2 and 6, show that b = 2 using an algebraic method. [3]
- (ii) Describe a sequence of 2 transformations that transform the graph of C onto the graph of $y = \frac{x^2 + 5x + 4}{x}, x \neq 0.$ [3]

(i) <u>Method 1</u>



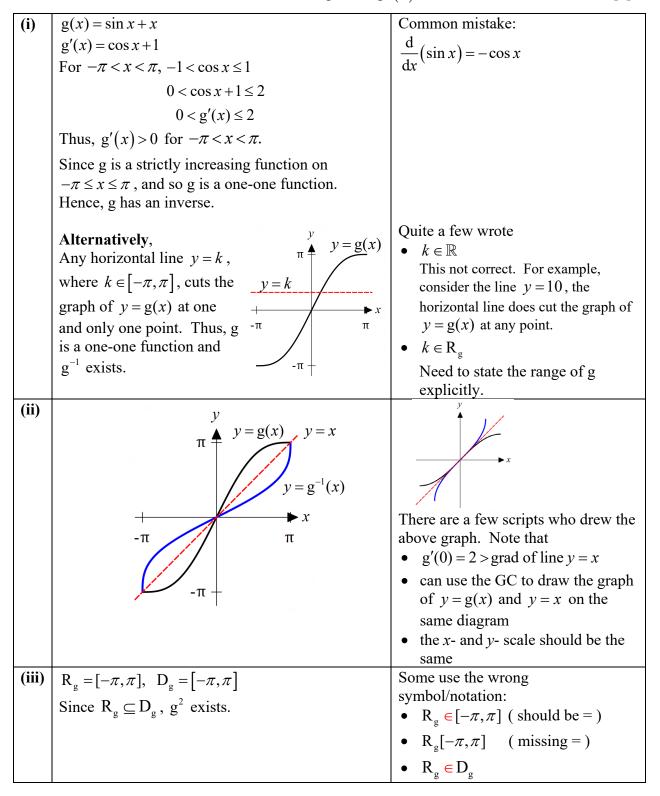
(ii) We can rewrite the 2 equations as

$$y = \frac{x^2 - 2x + 4}{x - 2} = x + \frac{4}{x - 2} \text{ and } y = \frac{x^2 + 5x + 4}{x} = x + 5 + \frac{4}{x}$$
Note that for such question, you need to **describe** (in words) the transformation used. Stating "Replace x by $x + 2$ " is not a description, but is part of your working.

$$y = x + \frac{4}{x - 2} \xrightarrow{\text{Replace x by } x + 2} y = x + 2 + \frac{4}{x}$$

$$\xrightarrow{\text{Replace y by } y - 3} y - 3 = x + 2 + \frac{4}{x}$$
Need to use the proper wordings for describing transformations. In this question, "translate by k units positive/negative $y = x + 2 + \frac{4}{x}$, 2) followed by a translation of 3 units in the positive y-direction.
2) followed by a translation of 3 units in the positive y-direction.

- 2 The function g is defined by $g: x \to \sin x + x$, for $x \in \mathbb{R}$, $-\pi \le x \le \pi$.
 - (i) Show that g'(x) > 0 for $-\pi < x < \pi$. Hence, or otherwise, show that g has an inverse. [2]
 - (ii) Sketch on the same diagram the graphs of y = g(x) and $y = g^{-1}(x)$. [3]
 - (iii) Show that the composite function g^2 exists. [1]
 - (iv) Find the exact solutions of the equation $g^2(x) = x$. [2]



Page 3 of 19

(iv)	$g^2(x) = x$	
	$g^{-1}(g^{2}(x)) = g^{-1}(x)$	
	$g(x) = g^{-1}(x)$	
	From the graphs of $y = g(x)$ and $y = g^{-1}(x)$ in	
	(ii), they intersect at $x = -\pi$, 0, π	
	The solutions are $x = -\pi$, 0, π	

(i) Prove by the method of differences that
$$\sum_{r=1}^{N} \frac{1}{\sqrt{r} + \sqrt{r+1}} = \sqrt{N+1} - 1.$$
 [3]

3

(ii) Find
$$\sum_{r=4}^{N-1} \frac{1}{\sqrt{r} + \sqrt{r+1}}$$
 in term of N. [2]

(iii) Using part (i), show that
$$\sum_{r=1}^{N} \frac{1}{\sqrt{r}} > 2(\sqrt{N+1}-1)$$
 [2]

(i)	$\sum_{k=1}^{N}$	Most are able to rewrite the term
	$\sum_{r=1}^{N} \frac{1}{\sqrt{r} + \sqrt{r+1}}$	by rationalizing the denominator, and obtain a difference of two
	$=\sum_{r=1}^{N}\frac{1}{\sqrt{r}+\sqrt{r+1}}\times\frac{\sqrt{r}-\sqrt{r+1}}{\sqrt{r}-\sqrt{r+1}}$	related terms.
	$=\sum_{r=1}^{N} \frac{\sqrt{r} - \sqrt{r+1}}{r - (r+1)}$	
	$=\sum_{r=1}^{N} \left(\sqrt{r+1} - \sqrt{r}\right)$	
	$=\sqrt{2}-1$	
	$= \sqrt{2} - 1$ $+ \sqrt{3} - \sqrt{2}$ $+ \sqrt{4} - \sqrt{3}$	
	$+\sqrt{4}-\sqrt{3}$	
	$+\sqrt{N}-\sqrt{N-1}$	
	$+\sqrt{N} = \sqrt{N} = 1$ $+\sqrt{N+1} = \sqrt{N}$	
(ii)	$=\sqrt{N+1}-1$	
	$\sum_{r=4}^{N-1} \frac{1}{\sqrt{r} + \sqrt{r+1}} = \sum_{r=1}^{N-1} \frac{1}{\sqrt{r} + \sqrt{r+1}} - \sum_{r=1}^{3} \frac{1}{\sqrt{r} + \sqrt{r+1}}$	
	$=\sqrt{N}-1-(\sqrt{4}-1)$	
	$=\sqrt{N}-2$	
(iii)	For $r \ge 1$, $\sqrt{r} + \sqrt{r+1} > \sqrt{r} + \sqrt{r}$	
	1 1	
	$\frac{1}{\sqrt{r} + \sqrt{r+1}} < \frac{1}{\sqrt{r} + \sqrt{r}}$	
	$\sum_{r=1}^{N} \frac{1}{\sqrt{r} + \sqrt{r+1}} < \sum_{r=1}^{N} \frac{1}{\sqrt{r} + \sqrt{r}}$	
	$\sqrt{N+1} - 1 < \frac{1}{2} \sum_{r=1}^{N} \frac{1}{\sqrt{r}}$	
	$\sum_{r=1}^{N} \frac{1}{\sqrt{r}} > 2\left(\sqrt{N+1} - 1\right)$	

4 A curve *C* has parametric equations

$$x = e^t \cos t, \ y = e^{-t} \sin t.$$

- (i) Find the equation of the tangent to C at the point with parameter p. Give your answer in the form y = mx + c. [5]
- (ii) The tangent meets the x-axis at point A and the y-axis at point B. Find, in terms of p, the area of the triangle OAB, where O is the origin. [3]

(i)	$x = e^{t} \cos t$ $\frac{dx}{dt} = e^{t} (-\sin t) + e^{t} (\cos t)$ $= e^{t} (\cos t - \sin t)$ $\frac{dy}{dx} = e^{-2t}$	$y = e^{-t} \sin t$ $\frac{dy}{dt} = e^{-t} (\cos t) - e^{-t} (\sin t)$ $= e^{-t} (\cos t - \sin t)$	Need to use product rule to differentiate x and y with respect to t.
	Equation of tangent: $y - e^{-p} \sin p = e^{-2p} (x - e^{p} \cos p)$ $y = e^{-2p} x + e^{-p} \sin p - e^{-p} \cos p$ $y = e^{-2p} x + e^{-p} (\sin p - \cos p)$		
(ii)	At A, $y = 0$ and $x = \frac{-e^{-p} (\sin p)}{e^{-2p}}$ At B, $x = 0$ and $y = e^{-p} (\sin p - c)$ Area of triangle OAB $= \frac{1}{2} \times -e^{p} (\sin p - \cos p) \times e^{-p} (\sin p) $ $= \frac{1}{2} \sin p - \cos p ^{2}$ $= \frac{1}{2} (\sin p - \cos p)^{2}$	Quite a number of solutions gave the answer as $-\frac{1}{2}(\sin p - \cos p)^2$, and not realizing that this expression is always <u>negative</u> . Actually either <i>OA</i> or <i>OB</i> is negative, so there is a need to find the absolute value for the lengths when finding the area.	

5 The complex number z satisfies the equation f(z) = 0, where

$$f(z) = (1 - ai)z^2 - 2iz - 10 - 20i$$

and a is a real number. It is given that one root is of the form 1+bi, where b is an integer.

(i) Show that *b* satisfies the equation

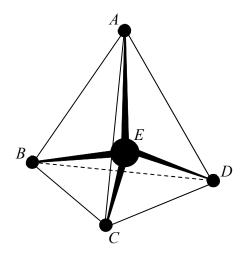
$$b^4 - 2b^3 + 12b^2 - 42b - 9 = 0$$
. [3]
e other root of $f(z) = 0$. [4]

(ii) Hence find a and b, and the other root of f(z) = 0.

(i) [3]	$(1-ai)(1+bi)^{2} - 2i(1+bi) - 10 - 20i = 0$ $(1-ai)(1+2bi-b^{2}) - 2i+2b - 10 - 20i = 0$ $1+2bi-b^{2} - ai + 2ab + ab^{2}i - 2i + 2b - 10 - 20i = 0$ $(-b^{2} + 2ab + 2b - 9) + i(2b - a + ab^{2} - 22) = 0$ Comparing Real part: $-b^{2} + 2ab + 2b - 9 = 0$ $a = \frac{9 - 2b + b^{2}}{2b}(1)$ Imaginary part: $2b - a + ab^{2} - 22 = 0(2)$ Subst (1) into (2), $2b - \frac{9 - 2b + b^{2}}{2b} + \left(\frac{9 - 2b + b^{2}}{2}\right)b - 22 = 0$ $4b^{2} - 9 + 2b - b^{2} + (9 - 2b + b^{2})b^{2} - 44b = 0$ $b^{4} - 2b^{3} + 12b^{2} - 42b - 9 = 0$	Quite a few are careless in simplifying the equation. There are a few who wrote that $1-bi$ (conjugate pair) is a root of $f(z) = 0$. However, not all the coefficients of f(z) = 0 are real numbers. Thus, the theorem cannot be used.
(ii) [4]	Solving the quartic equation in (i) using GC and since b is an integer, we get $b = 3$. Subst $b = 3$ into eqn (1), we get $a = 2$. <u>Method 1</u> Let the other root be z_0 . $(1-2i)z^2 - 2iz - 10 - 20i = (1-2i)[z - (1+3i)](z - z_0)$ Comparing the constant term, $-10 - 20i = (1 - 2i)(1 + 3i)z_0$ $z_0 = \frac{-10 - 20i}{(1 - 2i)(1 + 3i)} = -1.8 - 2.6i$, using GC \therefore The other root is $-1.8 - 2.6i$	There are a few who wrote $(1-2i)z^2 - 2iz - 10 - 20i =$ $[z - (1+3i)][(1-2i)z - z_0]$ This is not wrong, but do note that z_0 is not the root of the equation $f(z) = 0$. The root is going to be $\frac{z_0}{1-2i}$, in this case. There are quite a few who are able to get full marks for (ii), although not able to do (i). This is commendable. • Make use of the quartic eqn in (i) and use GC to solve for <i>b</i> . • The substitute $z = 1 + bi$ into $f(z) = 0$ to find the value of <i>a</i> (use GC)

Method 2	
$(1-2i)z^2 - 2iz - 10 - 20i = 0$	
$z = \frac{2i \pm \sqrt{-4 - 4(1 - 2i)(-10 - 20i)}}{2(1 - 2i)}$	
2(1-2i)	
$=\frac{i\pm7}{1-2i}$, using GC	
$=1+3i \text{ or } -\frac{9}{5}-\frac{13}{5}i$	
The other root is $-\frac{9}{5} - \frac{13}{5}i$.	

6 The molecular geometry is the three dimensional arrangement of atoms in a molecule. Fig. 1 shows the molecular geometry of a particular molecule which is of a tetrahedral form with one central atom lying inside the tetrahedron and 4 other atoms at the vertices of the tetrahedron. The points A, B, C and D represent the 4 vertices of the tetrahedron and are connected to the central atom, which is denoted by the point E, forming 4 pairs of bonding atoms AE, BE, CE and DE.



The coordinates of A, B, C, D and E are given by (2,3,4), (0,0,3), (3,0,0), (0,4,0)and (1,1,2) respectively. The plane p passes through the points A, B and C. The line l passes through the points D and E.

- Find a cartesian equation of *p*. (i) [4]
- Find a vector equation of l and the coordinates of the point of intersection of l and (ii) [4] (iii) Hence, find the shortest distance from point *E* to *p*. [2]

The bond angle is the angle between any two pairs of bonding atoms, measured in degrees.

(iv) Find the bond angle between bonding atoms AE and CE. [2]

(i) [4]	$\frac{\text{Method 1}}{\overrightarrow{AB}} = \begin{pmatrix} 0\\0\\3 \end{pmatrix} - \begin{pmatrix} 2\\3\\4 \end{pmatrix} = \begin{pmatrix} -2\\-3\\-1 \end{pmatrix}; \overrightarrow{BC} = \begin{pmatrix} 3\\0\\0 \end{pmatrix} - \begin{pmatrix} 0\\0\\3 \end{pmatrix} = \begin{pmatrix} 3\\0\\-3 \end{pmatrix}$	
	Since $\begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix} \times \begin{pmatrix} 3 \\ 0 \\ -3 \end{pmatrix} = \begin{pmatrix} 9 \\ -9 \\ 9 \end{pmatrix}$, a normal vector of p is $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$.	

	$\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix} = 3$ \therefore cartesian equation of p is $x - y + z = 3$ <u>Method 2</u> Let the cartesian equation of p be $ax + by + cz + d = 0$. Since p passes through A, B and C, then 2a + 3b + 4c + d = 0 0a + 0b + 3c + d = 0 Using GC, we get $a = -\frac{1}{3}d$, $b = \frac{1}{3}d$, $c = -\frac{1}{3}d$, $d \in \mathbb{R}$. Thus, $-\frac{1}{3}dx + \frac{1}{3}dy - \frac{1}{3}dz + d = 0 \Rightarrow x - y + z = 3$ (by choosing a nonzero value of d) \therefore cartesian equation of p is $x - y + z = 3$	Note that the question asks for the Cartesian equation.
(ii) [4]	$\overline{DE} = \begin{pmatrix} 1\\1\\2 \end{pmatrix} - \begin{pmatrix} 0\\4\\0 \end{pmatrix} = \begin{pmatrix} 1\\-3\\2 \end{pmatrix}. \text{ So, } l: \mathbf{r} = \begin{pmatrix} 0\\4\\0 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-3\\2 \end{pmatrix}, \lambda \in \mathbb{R}$ $p: \mathbf{r} \cdot \begin{pmatrix} 1\\-1\\1 \end{pmatrix} = 3$ Substitute eqn (l) into eqn (p): $\begin{bmatrix} \begin{pmatrix} 0\\4\\0 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-3\\2 \end{pmatrix} \end{bmatrix} \cdot \begin{pmatrix} 1\\-1\\1 \end{pmatrix} = 3$ $-4 + 6\lambda = 3$ $\lambda = \frac{7}{6}$ The coordinates of the point of intersection are $\left(\frac{7}{6}, \frac{1}{2}, \frac{7}{3}\right)$	 There are a few who did not write the equation of the line appropriately: Missing r = Missing λ∈ ℝ Note that the question asks for the coordinates of the point of intersection.

(iii)	Shortest distance	Note that the question
[2]	$\left[\left(\begin{array}{c} 7 \end{array} \right) \right]$	state "Hence", so there is
	$=\frac{\left \begin{pmatrix} \frac{7}{6} \\ \frac{1}{2} \\ -\frac{7}{3} \end{pmatrix}^{-\binom{1}{1}} \right }{\left \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \right } = \left \begin{pmatrix} \frac{1}{6} \\ -\frac{1}{2} \\ \frac{1}{3} \end{pmatrix}^{-\binom{1}{1}} \right / \sqrt{3}$	a need to use the
		previous part answer to do this part of the
	$\left\ \left(\frac{1}{2} \right)^{-1} \right\ = \left\ \left(\frac{1}{2} \right)^{-1} \right\ = \left\ \left(\frac{1}{2} \right)^{-1} \right\ $	question.
	$\left\ \begin{array}{c} 7 \end{array} \right\ \left(\begin{array}{c} 2 \end{array} \right) \left(\begin{array}{c} 1 \end{array} \right) \left\ \begin{array}{c} \overline{6} \end{array} \right\ \left(\begin{array}{c} 1 \end{array} \right) \right\ $	question
	$\left(\frac{1}{3}\right)$ $\left 1 \right $ $\left 1 \right $ $\left 1 \right $	
	$=\frac{ - - - - - }{ (-1) } = -\frac{-1}{2} - \frac{1}{2} \sqrt{3}$	
	$\begin{bmatrix} 1\\1 \end{bmatrix}$ $\begin{bmatrix} -\frac{1}{3} \end{bmatrix}$	
	$=\left(\frac{1}{6} + \frac{1}{2} + \frac{1}{3}\right)/\sqrt{3} = \frac{1}{\sqrt{3}}$ units	
(iv)		It is stated in the cover
(iv) [2]	$\overrightarrow{AE} = \begin{pmatrix} 1\\1\\2 \end{pmatrix} - \begin{pmatrix} 2\\3\\4 \end{pmatrix} = \begin{pmatrix} -1\\-2\\-2 \end{pmatrix}$	page that "Give non-
[-]	$AE = \begin{vmatrix} 1 \\ - \end{vmatrix} \begin{vmatrix} 3 \\ - \end{vmatrix} = \begin{vmatrix} -2 \\ -2 \end{vmatrix}$	exact numerical answers
	(2) (4) (-2)	correct to 1 decimal place
	(1) (3) (-2)	in the case of angles in
	$\overrightarrow{CE} = \begin{vmatrix} 1 \\ - \end{vmatrix} = \begin{vmatrix} 1 \\ - \end{vmatrix}$	degrees", some corrected
	$\overrightarrow{CE} = \begin{pmatrix} 1\\1\\2 \end{pmatrix} - \begin{pmatrix} 3\\0\\0 \end{pmatrix} = \begin{pmatrix} -2\\1\\2 \end{pmatrix}$	the answer to 3 s.f.
	(2) (0) (2) $\cos \angle AEC = \frac{\begin{pmatrix} -1 \\ -2 \\ -2 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 1 \\ 2 \end{pmatrix}}{\begin{vmatrix} -1 \\ -2 \\ -2 \end{vmatrix} \begin{vmatrix} -2 \\ 1 \\ 2 \end{pmatrix}} = \frac{-4}{3(3)} = -\frac{4}{9}$ $\angle AEC = 1164^{\circ} (1 d p)$	Quite a few did this:
		(-1) (-2)
	$\begin{vmatrix} -2 \\ \bullet \end{vmatrix}$ 1	$ -2 \bullet 1 $
	$\cos \angle AEC = \frac{(-2)(2)}{(-2)} = \frac{-4}{-4} = -\frac{4}{4}$	$\cos \angle AEC = \frac{\begin{vmatrix} 1 \\ -2 \\ -2 \end{vmatrix}}{\begin{vmatrix} -2 \\ -2 \end{vmatrix}} = \frac{4}{9}$
	$\left(\begin{array}{c} -1 \end{array} \right) \left(\begin{array}{c} -2 \end{array} \right) = 3(3) = 9$	$\cos \angle AEC = \frac{1}{\left(-1\right)\left(-2\right)} = \frac{1}{9}$
		-2 1
	$\angle AEC = 116.4^{\circ} (1 \text{ d.p.})$	$\angle AEC = 63.6^{\circ} (1 \text{ d.p.})$
	ZALC = 110.4 (1 u.p.)	Note that the bond angle,
		in this question, is
		$\measuredangle AEC$, which not necessarily has to be an
		acute angle.
		When finding the angle
		between 2 vectors, it is
		important to make sure that both vectors are
		"leaving from" or
		"meeting at" the same
		point (point <i>E</i> , in this
		question). See Chap 4B:
		Vectors I notes page 8.
		Thus, should use either
		$\overrightarrow{AE \bullet CE}$ or $\overrightarrow{EA \bullet EC}$, and
		<u>not</u> $\overrightarrow{AE} \cdot \overrightarrow{EC}$.

7 (a) It is given that $x \frac{dy}{dx} = y + 6xy$.

(i) Using the substitution $y = v^2 x$, show that the differential equation can be transformed to $\frac{dv}{dx} = f(v)$, where the function f(v) is to be found. [3]

(ii) Hence solve the differential equation $x \frac{dy}{dx} = y + 6xy$ to find y in terms of x. [2]

- (b) A simple mathematical model for the spread of epidemics assumes that the number of people, x, infected with an infectious disease changes at a rate proportional to the product of the number of people infected with the disease and the number of people who are not yet infected by the disease, with k being the constant of proportionality.
 - (i) Assuming that the population remains constant at P, write down a differential equation involving x, t, P and k. [1]
 - (ii) Solve the differential equation and show that $x = \frac{Px_0}{x_0 + (P x_0)e^{-kPt}}$, where x_0 is the number of infected people at time t = 0. [5]
 - (iii) What happens to the number of people infected with the disease if this situation continues after many years ? [1]

$$\begin{array}{|c|c|c|c|} \textbf{(a)} & y = v^2 x & \text{Some wrote } \frac{dy}{dx} = v^2. \\ \textbf{(j)} & \frac{dy}{dx} = 2vx \frac{dv}{dx} + v^2 & \text{Some wrote } \frac{dy}{dx} = v^2. \\ \text{Thus,} & x \frac{dy}{dx} = y + 6xy & \text{some wrote } \frac{dy}{dx} = v^2. \\ \text{Thus,} & x \frac{dy}{dx} = y + 6xy & \text{some wrote } \frac{dy}{dx} = v^2. \\ x \left(2vx \frac{dv}{dx} + v^2 \right) = v^2 x + 6x \left(v^2 x \right) & \text{a need to use product rule when differentiating } y. \\ 2vx^2 \frac{dv}{dx} = 6v^2 x^2 & \frac{dv}{dx} = 3v & \frac{dv}{dx} = 3v \\ \hline \textbf{(ii)} & \frac{dv}{dx} = 3v & \frac{dv}{dx} = 3v & \frac{dv}{dx} = 3v \\ \textbf{(ii)} & \int \frac{1}{v} dv = \int 3 dx & \text{some wrote } \frac{1}{v} dv = \ln |v| + c \\ |v| = e^{3x + c} & v^2 = e^{6x + 2c} & \frac{y}{x} = e^{6x + 2c} \Rightarrow y = Axe^{6x} \end{array}$$

(b)	$\frac{\mathrm{d}x}{\mathrm{d}x} - kr(P - r)$	
(i) [1]	$\frac{\mathrm{d}x}{\mathrm{d}t} = kx(P-x)$	
[1] (ii) [5]	$\frac{dx}{dt} = kx(P-x)$ $\int \frac{1}{x(P-x)} dx = \int k dt$ $\frac{1}{P} \int \frac{1}{x} + \frac{1}{P-x} dx = \int k dt$ $\int \frac{1}{x} + \frac{1}{P-x} dx = \int k dt$ $\int \frac{1}{x} + \frac{1}{P-x} dx = P \int k dt$ $\ln x - \ln P-x = kPt + c$ $\ln x - \ln (P-x) = kPt + c,$ since $0 < x < P$ $\ln \left(\frac{x}{P-x}\right) = kPt + c$ $\ln \left(\frac{x}{P-x}\right) = kPt + c$ $\frac{x}{P-x} = Ae^{kPt}, \text{ where } A = e^{C}$ When $t = 0, x = x_{0}$. So, $A = \frac{x_{0}}{P-x_{0}}$. $\frac{x}{P-x} = Ae^{kPt} (P-x)$ $x + xAe^{kPt} = APe^{kPt}$ $a = \frac{APe^{kPt}}{1 + Ae^{kPt}}$ $= \frac{\left(\frac{x_{0}}{P-x_{0}}\right)e^{kPt}}{1 + \left(\frac{x_{0}}{P-x_{0}}\right)e^{kPt}}$ $= \frac{Px_{0}e^{kPt}}{(P-x_{0}) + x_{0}e^{kPt}}$	There is a significant number who are not able to solve this differential equation. A similar question was done in • Chap 8C notes Eg 11 • Tut 8C Qn 9, 11 •
	$=\frac{Px_0}{\left(P-x_0\right)e^{-kPt}+x_0}$	
(iii) [1]	As $t \to \infty, x \to P$. The whole population will be infected	As this is a contextual question
[1]	eventually.	contextual question, you will need to
		answer in words.

PROBABILITY AND STATISTICS (40 marks)

8 A group of hikers is to be chosen to represent three hiking teams in an annual hiking challenge. The group is to consist of 7 hikers and is chosen at random from a set of 10 hikers consisting of 2 hikers from team A, 3 hikers from team B and 5 hikers from team C. Find the number of ways in which the group can be chosen if

- (i) there are no restrictions,
- (ii) there are at least 4 hikers from team C.
- (iii) there are at least 1 hiker from each team.

(i)	Total selecti	$ion = {}^{10}C_7$			
[1]		=120			
(;;)	Number of s	alactions			There are a few who
(ii) [2]	$= {}^{5}C_{4} \times {}^{5}C_{3} +$				wrote the answer as
LJ			-	s + 5 hikers from Team $C \& 2$ hikers from others]	${}^{5}C_{4} \times {}^{6}C_{3} = 100$. This
	= 60		ikers from other		is not correct, as
		there will many			
					repeated counts.
(iii)	Number of s	selections			Refer to Tut S1A Q6.
[3]	$=120 - {}^{8}C_{7}$				
	,	,	ker from tea	m A - No hiker from team B]	
	=111				
	Alternative Number of s	•			
	$= {}^{2}C_{1} \times {}^{8}C_{6}$				
			am A & 6 hike	ers from others	
	-			hikers from others	
	– both hiker	rs from team 2	4 are chosen &	& 5 hikers from team C]	
	=111				
	Alternative Number of		m Team		
	A	B	$\frac{1111}{C}$	Number of ways	
	1	1	${}^{2}C_{1} \times {}^{3}C_{1} \times {}^{5}C_{5} = 6$		
	1	2			
	1	3			
	2	1			
	2	2			
	2	3	2	${}^{2}C_{2} \times {}^{3}C_{3} \times {}^{5}C_{2} = 10$	
	Total number	er of ways	= 6 + 30 +	20+15+30+10=111	

[1]

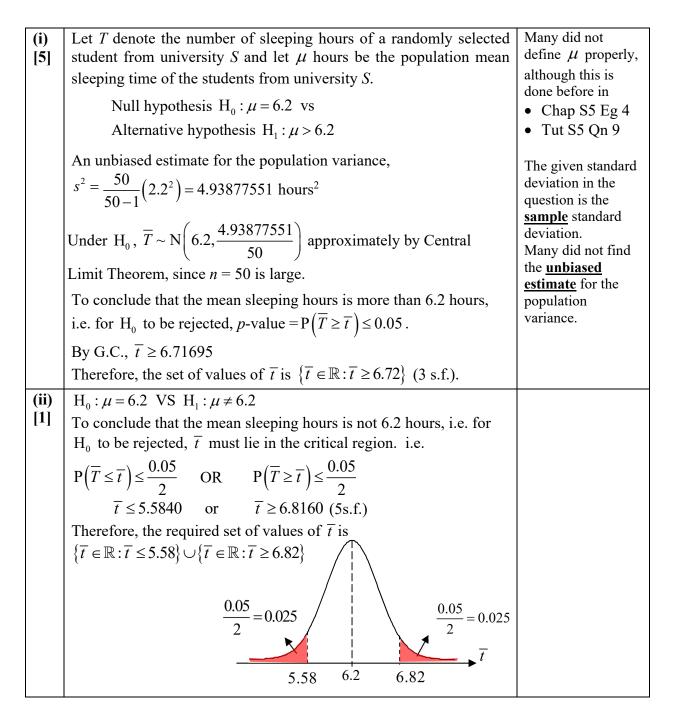
[2]

[3]

9 A study found that students at the National University of Singapore and the Nanyang Technological University sleep an average of 6.2 hours a day. Andy surveys 50 students from university S to estimate each person's daily sleeping hours. The sample mean is \overline{t} hours and the sample standard deviation is 2.2 hours. A test is to be carried out at the 5% level of significance to draw conclusions on the average daily sleeping hours of students from university S.

Source: https://www.straitstimes.com/singapore/lack-of-sleep-is-nothing-to-yawn-about

- (i) Find the set of values of \overline{t} for which he will conclude that the students from university S sleep more than 6.2 hours on average. State the appropriate hypotheses for the test, defining any symbols you use. [5]
- (ii) State the set of values of \overline{t} for which he will conclude that the average sleeping hours of students from university S is not 6.2 hours. [1]



- 10 For events A and B, it is given that P(A') = 0.3 and P(B) = 0.55.
 - (i) Given that the events A and B are independent, find $P(A \cap B)$. [1]
 - (ii) Given that events A and B are not independent, find the range of $P(A \cup B)$. [2]
 - (iii) Given that P(A' | B) = 0.4, find
 - (a) $P(A \cup B)$, [3]
 - (b) $P(A' \cup B')$.

(i)	$P(A \cap B) = 0.7(0.55) = 0.385$, since A and B are	
[1]	independent	
(ii)	P(A) = 0.7, P(B) = 0.55.	
[2]	The least value of $P(A \cup B)$ occurs when $B \subseteq A$. Then the	
	least value of $P(A \cup B)$ is 0.7.	
	The largest value of $P(A \cup B)$ occurs when $P(A \cup B) = 1$.	
	This is possible by considering $P(A \cap B) = 0.25$. (see	
	Venn diagram below)	
	$\begin{array}{c c} A \\ \hline 0.45 \\ \hline 0.25 \\ \hline 0.3 \\ \end{array} \\ \begin{array}{c} B \\ B \\ \end{array} \\ \end{array}$	
	From (i), when A and B are independent, $P(A \cap B) = 0.385$.	
	Then, the corresponding $P(A \cup B) = P(A) + P(B) - P(A \cap B)$	
	= 0.7 + 0.55 - 0.385	
	= 0865	
	Since <i>A</i> and <i>B</i> are not independent, then we need to exclude $P(A \cup B) = 0.865$.	
	Thus, range of $P(A \cup B)$ is $[0.7, 1] \setminus \{0.865\}$.	
(iii) (a) [3]	$\frac{\text{Method 1}}{P(A' B) = 0.4} \implies P(A' \cap B) = 0.4 \times 0.55 = 0.22$ Thus, $P(A \cup B) = P(A' \cap B) + P(A) = 0.22 + 0.7 = 0.92$	
	Method 2	
	P(A B) = 1 - P(A' B) = 1 - 0.4 = 0.6	
	$P(A \cap B) = P(B) P(A B) = (0.55)(0.6) = 0.33$	
	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	
	= 0.7 + 0.55 - 0.33	
(iii)	$= 0.92$ $P(A' \cup B') = 1 - P(A \cap B)$	Quite a significant number
(m) (b)	=1-0.33	of students wrote:
[2]	= 0.67	• $P(A' \cup B') = 1 - P(A \cup B)$
	= 0.07	This is not correct, although
		P(A') = 1 - P(A). See from
		the Venn diagram • $P(A' \cup B') = 1 - P(A' \cap B')$
		$\bullet I (A \cup D) - I - I (A \cap D)$

[2]

11 A policeman inspects each passenger in the car that he stops during a roadblock. The number of passengers in a randomly stopped car is the random variable X. The probability distribution of X is shown in the table below.

x	1	2	3	4	5
$\mathbf{P}(X=x)$	0.32	0.43	0.16	0.07	k

(i) Find the value of k and determine E(X).

[2]

The policeman randomly stops 10 cars to inspect the passengers at a particular roadblock, and the total number of passengers inspected is the random variable Y.

(ii) Find E(Y) and Var(Y).

[2]

The policeman also checks the car boot if the number of passengers in the car is not more than 2.

- (iii) Find the probability that he checks more than 5 car boots at that roadblock. [2]
- (iv) Find the probability that the last car is the 5th car boot that he checks at that roadblock. [2]

(i) [2]	k = 1 - 0.32 - 0.43 - 0.16 - 0.07 = 0.02 E(X) = $\sum x P(X = x) = 2.04$	
(ii) [2]	$Y = X_1 + X_2 + \dots + X_{10}$ E(Y) = 10E(X) = 20.4	A few wrote • $Var(X) = E(X^2)$
	$\frac{11}{\frac{12}{2}, 0.32} = \frac{1}{0.02} = \frac{1}{0.02} = 0.96871^2 = 0.9384$	• $Var(Y) = 10^2 Var(X)$ It is stated on the cover page that "Give non- exact numerical answers correct to 3 significant figures". So, Var(Y) = 9.384 is an exact answer, there is no need to correct to 3 s.f.
(iii) [2]	Let <i>C</i> be the number of car boots checked by the police, out of 10 cars. Then, $C \sim B(10, 0.32 + 0.43 = 0.75)$	Common mistake • $P(C > 5) = 1 - P(C \le 4)$
	$P(C > 5) = 1 - P(C \le 5) = 0.922 (3.s.f.)$	
(iv) [2]	Let <i>D</i> be the number of car boots checked by the police, out of 9 cars. Then, $D \sim B(9, 0.75)$	
	The required probability = $P(D = 4) \times 0.75$	
	$= 0.0389328 \times 0.75$	
	= 0.0292 (3 s.f.)	

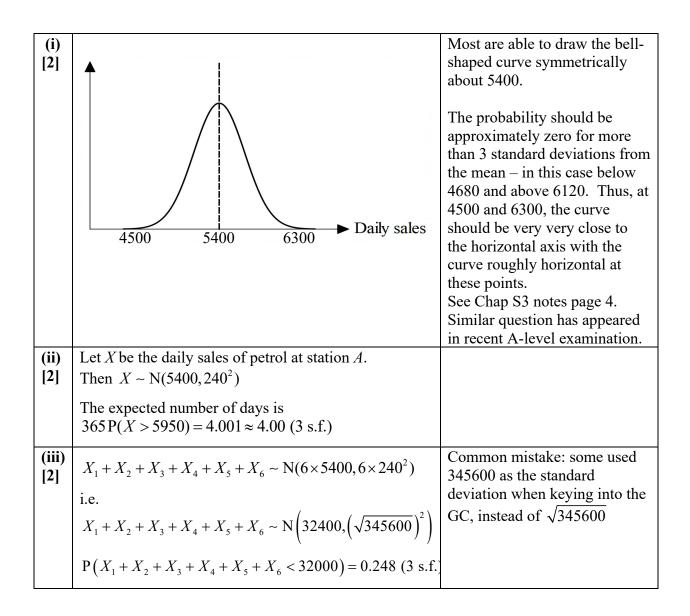
12 In this question you should state the parameters of any distributions that you use.

A petrol station (Station A) finds that its daily sales, in litres, are normally distributed with mean 5400 and standard deviation 240.

- (i) Sketch the distribution for the daily sales of petrol at Station *A* between 4500 litres and 6300 litres. [2]
- (ii) Find the expected number of days of the year (365 days) the daily sales of petrol at Station *A* exceed 5950 litres. [2]
- (iii) Find the probability that the total daily sales of petrol at Station *A* on 6 randomly chosen days is less than 32000 litres. [2]

The daily sales at another petrol station (Station B) are normally distributed with mean 6200 litres and standard deviation s litres.

- (iv) The probability that daily sales of petrol at Station B on a randomly chosen day are more than 5000 litres is 0.99. Find the value of s. [3]
- (v) Find the probability that, on a randomly chosen day, the daily sales of petrol on at Station *B* are more than half of that at Station *A* by at least 2000 litres. State an assumption needed for your calculation.
 [3]



(iv)	Method 1	Some found the value of <i>s</i> by
[3]	Let Y be the daily sales of petrol at station B .	using a table of values.
[2]	Then $Y \sim N(6200, s^2)$	However, this method is not
		suitable for this question
	P(Y > 5000) = 0.99	normalcdf
	$P\left(Z > \frac{5000 - 6200}{s}\right) = 0.99$ $P\left(Z > -\frac{1200}{s}\right) = 0.99$	lower:5000 upper:ε99 μ:6200 σ:Χ Paste
	$\left(\begin{array}{cc} 2 \\ s \end{array}\right)^{-0.55}$	Plot1 Plot2 Plot3
	From GC, we know that $P(Z > -2.32635) = 0.99$	NY1≣normalcdf(5000, E99, 62)
	1200 - 222625	X Y1
	Thus, $-\frac{1200}{s} = -2.32635$	507 0.991 508 0.9909
	s = 515.83 (5 s.f.)	509 0.9908
		510 0.9907 511 0.9906
	=516 (3 s.f.)	512 0.9905
	Method 2	513 0.9903 514 0.9902
	We can use GC to draw the graph of	515 0.9901 516 0.99
	y = normalcdf(500, E99, 6200, x) and y = 0.99, to see	517 0.9899
	where they intersect. The <i>x</i> -coordinate of the point of	Y1=0.98997957695137
	intersection would represent the value of s.	 Table of values method
	1.00	• Table of values method should be used when the
		answer is an integer . What if the array $a = 2, 12, (2)$
	0.99	if the answer is $s = 2.13$ (3
		s.f.)?
		• From the table above, it
	550	seems like $s = 516$ gives the
	$0.98 \begin{array}{c} 0 \\ \hline \text{Intersection} \\ \text{X=515.83018} \\ \text{Y=0.99} \end{array}$	probability to be exactly
		0.99. However, when you move the cursor to the
	From GC, $s = 515.83$ (5 s.f.)	value, it is actually
	=516 (3 s.f.)	0.98997 Because the
	Note: this method is not encouraged because there is	space in the table can only
	not much working. If you do not get your answer	show up to 5 digits, when
	correctly, you may not get any marks at all as no	rounded off to 4 d.p., it
	method is seen.	shows 0.99.
(v)		Some used the value of <i>s</i> to be
[3]	$Y - \frac{1}{2}X \sim N\left(6200 - \frac{1}{2} \times 5400, 515.83^2 + \frac{1}{4} \times 240^2\right)$	516, and this gives an over-
		estimated value for the
	i.e. $Y - \frac{1}{2}X \sim N\left(3500, \left(\sqrt{280480.6}\right)^2\right)$	variance of $Y - \frac{1}{2}X$.
	p(y = 1, y > 2000) = 0.000 (2 - 0)	Some gave
	$P\left(Y - \frac{1}{2}X \ge 2000\right) = 0.998 \ (3 \text{ s.f.})$	• $\operatorname{Var}\left(Y - \frac{1}{2}X\right) = 515.83^2 - \frac{1}{4} \times 240^2$
	Assumption: the daily sales of petrol at Station A and	Quite a number of scripts
	at Station <i>B</i> are independent of each other.	missed the last part of the
		question, which is to state the
		assumption
L		