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Mathematical Formulae

1. ALGEBRA
Quadratic Equation
For the equation ax? + bx + ¢ =0,

_ —b*+b*~dac

x_
2a

2. TRIGONOMETRY
Identities

sinfA4+cos2A4=1
secZA=1+tan’ 4

cosec?A=1+cot? 4

sin(4 £ B) =sin Acos B £ cos Asin B

cos(A4 £ B) =cos Acos B Fsin Asin B

+
tan(A+ B) = tan 4 +tan B

sin 24 = 2sin Acos 4

cos2A4=cos’* A—sin* A=2cos* A—-1=1-2sin’ 4

tanu@.%%
1-tan” 4

Formulae for ABABC

a b _ ¢
sin4d sinB sinC

a*=b*+c* - 2bc cos A

1
A= —absinC
2a sin

PartnertnLearning
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BP-5

Do not use a calculator in answering this question.

It is given that \/§(x+3) =x+17. Find x in the form a+5/3 , Where a
and b are integers. [4]

(a) State, in terms of 7, the principal value of
@ tan’l, [1]

(i) sin™ (—QJ (1]

(b) Explain why the principal value of cos™ (——\/22) cannot be —% . [1]
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Given that these simultaneous equations

¥ +y*—16=0,
x-y=k

have exactly one pair of solutions, show that £ ==+ p\/z , where p is an integer.

Partnerinl.earning
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[6]
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BP-7

Given that the period of y =35sinbx—2 is 120°.

(a) Find the value of 5. 1]

Tmtlon

(b)  On the axis below, sketch the graph of y =5sinbx -2 for ~90° < x<180°.

YA
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BP~8

] (a) Show that f(x)=4x>—10x+16 can be written as f(x)=a(x—b)* +c, where a,
b and c are constants to be found. (3]

(b) Explain why the function f(x) is always positive. [1]
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BP-9

6 (a) Without using a calculator, and showing all your working, find the exact

. kY4 T . 5w
value Of SIN—COS—+CcOoS—Sin—. 2
4 12 412 (2]

(b) Given that tan @ =k and that & is acute, express in terms of &

i)  secd, [2]

(i) sin26. [2]
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BP~10

x2+18x-.-50 . [5]

(@) Express ————-— in partial fractions.
x(x+5)
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Tuition
(b) Hence differentiate xz_+1_8x_+_5_0 u 1t

+5)° with respect to x.
x(x+ .

(2]
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[t

8 Solve the equation Scos2x+3sinx =4 for 0" <x <360". [5]
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N2x*+1

The equation of a curve is y = 3
x —

. dy
a) Find —.
(a) Fin .

(b) Find the equation of the tangent to the curve at x=2.
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BP~14

10 (a) Differentiate ——§—)7 with respect to x.

xt+1

(2]

12x

(b) Hence evaluate ...2 (—2;5;
—1 x

(3]
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e
el
De&.ﬂ'd
anm -
evomt W
’ﬂ

(2]

(¢) Explain why the curve y = —% is a decreasin
x°+1) % 9

E
=
9
.'»'3
=4
=
.
\
=
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11

A container, initially empty, is filled with water. After ¢ seconds, the depth of water
in the container is 4 cm and the volume of water, ¥ cm?®, is given by

V=-78£h2(3+h).

Given that the volume of water increases at a constant rate and that # = 6 when =4,
find

(a) the constant rate of change of the volume of water, [3]

(b) the rate of change of the depth of water at the instant when A = 2. [4]
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(a) Find the radius and coordinates of the centre of the circle
x*+y*—4x-3y-10=0.

(b) Determine whether the point (6,1) lies on the circle.

(¢) Find the equation of the tangent to the circle at the point A(4,-2).

[ Turn over
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(d) Given that 4B is a diameter of this circle, find the coordinates of the point B. [2]
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Mathematical Formulae

1. ALGEBRA
Quadratic Equation
For the equation ax? + bx + ¢ =0,

~b++b* —4ac

2a

2. TRIGONOMETRY
Identities
sin?4 +cos?4=1

sec?A=1+tan’ 4

cosec’ A =1+ cot* 4
sin(A4 + B) =sin Acos B+ cos Asin B
cos(A £ B) =cos Acos B Fsin Asin B
tan A +tan B
1¥tan Atan B

sin 24 = 2sin Acos A4

cos24 = cos® A—sin* 4 =2cos®> A—-1=1-2sin* 4

l1—tan” A4

tan(4 + B) =

Formulae for AABC
a b c

sind sinB sinC

a*=b*+c?—2bccos A

A= —l—ab sin C
2
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4 3 Z
1 Express 2x 3x2+Zx +51 x-15 in the form ax’ +bx+c, where a, b and ¢ are
X =2x+

integers. (3]
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2

(a)  Solve the inequality 2x* +6x+13<3x(x—2).

(b) A line has equation y =x—7 and a curve has equation y =3x* —5x+1.

Determine whether the line intersects, is a tangent to, or does not intersect the
curve. Give a reason for your answer.

PartnerinLearning
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BP-24

(@)  Factorise 8a° +5°. [2]

(b)  Hence express 8(+3)° +(+/27)° in the form m/3 , where m is an integer. [3]
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BP~25

['uition
4 (a) Prove that — L - ! =2sec xlt (3]
sinx+1 sinx-1

1

(b) Hence solve the equation =3 forO<x<rm. (5]

sin2x+1 sin2x—1
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BP-26

S The point (—3,0) is a stationary point on the graph of y=x’ +hx* +3x+k.

(a) Showthat h=5. [3]

(b) Find the value of £. [1]
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BP-~27

(c) Find the x-coordinate of the other stationary point.
[2]

(d) Determine the nature of each of these stationary points. [3]
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(@)

(b)

Express 6sint+10cost in the form Rsin(f+a), where R >0 and

T .
O<a< —2— radians.

The oscillation of a mass attached to a spring can be modelled by
x = 6sint+10cos?, where x mm is the distance of the mass from its rest
position A4 at time ¢ seconds.

(i) Explain whether the mass can reach a distance of 18 mm from 4.

[ Turn over
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(ii) Find the time when the mass first reaches the maximum distance
from 4. [2]

(iii) After how many seconds does the mass first reach a height of 8§ mm
fromA4 ? [3]

PartnerinLearning
27

BP~29



Solutions to this question by accurate drawing will not be accepted.

The coordinates of the points 4, B and C are (2,—4), (2a+2,a) and(-3,1)
respectively. The area of the triangle 4BC is 32.5 units?.

(a) Given that g > 0, show that g = 3. [4]

(b) Find the coordinates of the point when the line 4C meets the x-axis. [3]

[ Turn over
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BP~31

(¢) Find the equation of the perpendicular bisector of BC. [4]
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A piece of wire of length 100 cm is bent into the shape of a trapezium PQRS.
Given that PQ = SR =x cm, Z/PQA = ZSRE = 60" and PABS is a rectangle.

X cm

(a) Show that PS = 1-002' 3x [3]

[ Turn over
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(b) Show that the area of the rectangle ABSP, A cm?, is given by

V3

A=—4—(100x—3x2).

PartnerinLearning
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BP-~34

(¢) Given that x can vary, find the value of x for which 4 is maximum. [4]
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9

The diagram shows the line y = x + 3 intersecting the curve y =—x’ +2x* +5 at the
point 4(2,5).

by

y=—-x+2x"+5 y=x+3

¥
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BP~36

(a)  Show that the curve y =—x +2x* +5 intersects the line y = x+3 at only one
point, 4(2,5). [4]

[ Turn over
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(b)

Find the area of the shaded region.
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Answer key

1. 2x* +x-3

2(a) x<-1 or x>13 Tuiti(}iﬁ

2(b) Since the discriminant is less than zero, the line and the curve does not meet.

3(a) (2a+b)(4a® —2ab+b*)  (b) 1053 wit

4(b) 0308, 1.26, 188, 283 Q N ;
1
5(b) -9 () x=—=
3
5(d)
d’y . _ _
When x =-3,—==-8<0 . It is a maximum point.
dx

2

Whenx=—l,d—J; =8> 0. It is a minimum point .
37 dx

6(a) V136 sin(z +1.03)
6(b)(i) Since maximum value of sin(#+1.03) =1, maximum value of

x=4/136 =11.661, so it is not possible for the mass to reach a distance of 18 mm.
6(b)(i1) 0.540 s
6(b)(iii) 1.36 s

7(b) (=2,0) 7(c) y=—1—21x+%3- ory=-55x+15.75
8(c)?=16% , A is a maximum

9(b) 3% units’
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Mathemabeal Fornudae

1. ALGEBRA
For the squation @f +bx+¢ =10,

_ bt —dac

a Za

Identities
sif A+cos? A=1

sec’ A=1+0an'4
coseciA=1+eoof 4
sinf A £ B) =ginAcoe B toos AsinE
coslATE) =cos Acos Bxain AsinE

. tanAftanB
e FFY i rvmmmiarmmereti
el ALE) Iz tnAtanB
sin2A=2sindcor 4
cos2A=cos? d-gin® A=Jos* A-1=1~2sin* 4

l-tan* 4

Formulae for 8ABC
a b o«
gnd sinEB  simC

@t=bt+el-dbccos 4

A= %ﬂé sm C

45
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, [ Turnover
Given that these sirmuliane ous equations
eyt 160,
Tmymk

have exacilyone pair of solutions, show that k-tm;ggﬁteg& el

BPapt-16=0 .. {13
x=-p=k eerenenne £2)
From (2,0 = 2= ¥ woooovecerernnnnnns {3)
Sub 3y into (1)
Balx=-B 1650 ..o MU Substitution)
B+t -+ -16=0
2t x4kt =16 =0, M (fira of ax® 481 4o = ()
Use b* -dac =0
20 - AR ~16) =0 MY
4 -8 28 =0 . VB ( simplification)
AP =128

=32 i ML
k=132
ket oAl

4f
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Given that the period of y = 3sinbxr -2 is 120"

(a) Find the value of 4. 1]
b=3 ... v Bl
(b)  On the axis below, sketch the graph of ¥ = 3sinhy~ 2 for ~90 < <180 3]
¥4

G1 - Shape of sine graph
(31 - Graph cuts y-axis at -2 and correct period
Gl - Correct maximum value of v = 3 and mintmum value of v = -7

www KiasuExamPaper.com
48
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(a)

[ Turnover

Show that £{x) = 4x*—10x +16 can'be written as f‘(ﬁx} =alx-bY +¢, where 2,
band ¢ are constants tobe found. '

f'l[vx’) =drt ~10x+16
'="4_[’x? —Ex +4]:...., .............. L { fac torisation)

=4[[ x—%]? _[%]? +4j| ............... MI( cormpleting of square}

(h) Explain whirthe function f{x) isalways positive.

Sinceg=4>10 andrrununumvaIUBDfi‘{x}=j—$-=‘ 0, then the function f{x) is

always positive. ... e, e B

PartnerinLearning
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7

] (a) Without using a cakulater, and showing all your werking, find the exact

value of smﬁcosiﬁ+cas£sm§—£.
4 12 4 12 £

O SENRST S.
sin——cos=——+cos—a

bL)
T T on
4 Tuition

(i) sin2g. (2

=Zsingcoss

[Turnover
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BP-51

.
@) Expess ‘_”_Eiﬂ in partial frac tions. [5]
X840 _4 B C i

xx 45" X OX+5 (x+5}
X H8x+350= ‘A{x+5)"+8x(x+ﬁ}+ci

Sub x=0, sn 255 ?Ultlon N

= =A+E

1= 4B

B==l...... e e e e S e A1
g8 2 L L3 Al

AR 3 x5 ixtST

PartnerinLearning
49



th)

=t + 18z + 50

Hence differentiate —
‘ =Hx+ 3Y

with respect fo x.

d
E[E x+5 (x+5)“J

= -I%[Ex" —(x 457 +3x+5)" ]

21+3

S, P Y P o T ST W (Chain rule), 41
2, 1 6

PartnerinLearning
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10
Solve the Equaﬁon Scos 2x+3simx =4 for O « s< 360 . [5]
Scosdx+3snx =4
50 -2sin® H+3snx-4=0 ... oo ML { use of double angle formula)
5=-10sintx+3sinx-4=0
10sintx-3sinx-1=0
(Ssinx+1)(2sinx =D =0 ..o ML factorisation)
sinx=—'-1-. or sinJr:—l- e T
5 2
basic £ =11.53 basic £ =30
x=191.5.3485 i Al x=30,150 ... oot iniie Al
PartnerinLearning
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The equation of a curve is y =

11

42!;2 +1 .

-3
i\
Fird ==
(a) Fird =
_ x4
Y x=-3
1
=[2x1+1)—f
d {2:( +1) ‘(4#} vl
=52 ) FE0)
- &
Jix* +1
2x
e 7= D= 22 1
dy _ i+ )

dx (x-3°
2: -fx-2x*-1
{x-3) \EJ’ +1

_ ~hr=1
(x=342x +1

() Find the equation of the tangent to the crve at z =2

Sub x =2 TaTela
’f Tuition
dp 13
E—I— = ~—?T &I’ui ";37 ...... b [
VM 1tx ; ‘ ;
Sub 1nt0_.v="§r+c/§\ D)
-3= ———(J)+c eesrarse it as s M1
i =£
3
eguation of nonmal is ¥ ——-1—3§-I+% ........ &l

PartnerinLearning
52

[4]

. II1{ Chuntient rule)

M { suuplification)

[

NI substitation), Al

[_Tilrn OVET
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m (a)

(k)

12

Differentiate ———2—5—-—2— with respectto x.
=+l

Let p= =6{x* +1)7

8
(x*+1)*
%"x—= A2 HDPRE) M1(Chain rule)

Hence evaluate I (ﬂx_
x

1y

I? 12x

ﬂix +1)3 ¥ TUltlon

7 —24x

o 2 -l{x +1:,s I .
T {x +1:,4:[ F o O

PartnerinLearning
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13

(c) Explain why the cuve y -

= 1}1- 15 adecreasing function for x = 0. [

When x>0, -24x<D and (x° 1 >0, Bl
dy 24

S0 —=

—— < 0. Thisshows that the curve is a decreasing function forx >0....... Bl
dr  (x"+D)

[ Turnover
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14

L containgy, 1mtlally empty; is filled with water. After £ seconds, the depth of water
in the container is b cm and the volume of water, Fem’, is gwenby
¥ --—Eﬁ*"{%‘ B}

Given that the volums of water increases at a constant rate andthat i = 6 when ¢ = 4,
find

(a) the comstart rate of change of the volwhe of water, [3]

(b) the rate of change of the dep{h of water at the instant when =2, [.4]

V= E(Eh’ _1_:.}!3)

d—V=£{6h #3H) s B

&

‘.88_1;:- = 6k 430 E e, M (s of ¢ e )
Subf—l

8lr &

--—-g-——=-—{24) —. ....... TR Ml {substtutmn}
& 81

dt 24

PartnerinLearning
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(a)

(h)

(c)

15

Find the radius ard coordinates of the centre of the circle

2 X — — -
x+ypi-dx-3p-10=0. il

fot-acy-nso o TyItion

(3= =2+ -15°-15-10=0 ... {ompleting of square)
(x-20+(p-1.5) =1625 WIL _“
centre = ( 2,1.5) oo Al \ 2N
'ﬁ.\‘ e

radius = 456.25 unite or 403 wmats......... A1
Ce termine whether the point (6,1} lies on the circle. [1]
Sub (6,1}
61 -4 &) - %1y -10
=0
s, (B,1) hesonthecurcle. ... Bl
Find the equation of the tangent to the circle at the point.A{4, -2} [zl
(215 (4.-3)

s 1542 17
gradient = ST ST Il

Sub infop =$x+c

2= %{4}, FE oo o ML
30
oE—_-—
? B
‘equation oftangent is p = 7;1—;1.‘7% %"1 e A1

[ Turnover
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18
(@) Civen that A isa diameter of this circle, find the coordinates of the p:unt B.

centre =(2,1.5) A(4,-2)

Let B={ab)

%‘*ﬁ and ?;zf_=1’.s e MIL{ comge ph of eidpoint)
a+d=4 B33

=0 5=5

B=(0,5) Al

PartnerinLearning
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Matke matical Formulae

1. ALGEBRA

Ouadvatic Eguation

For the equation ax? +bx +¢ =0,

2a

2. TRIGONOMETRY
Idenfifias
sint A4cosid=1

wctd=1+tanld
cosec? A=1+coff 4
sinfA iB}‘ =ginAcos B+cos Asim B
cos{ A+ B) =cos Acos B x sin AsinF
| tani A +tsn B
lxtanAtanB
sin 24 = 2ain Acns 4

tan( A+ B) =

cos2A =cos? A-sin® A=2cost A-1=1-2sin* 4

2tan A
ﬁngﬂ__—l—ﬁn*ﬂ
Formulae for ABABC _

@ B e
sind sinB  sinC

2= bt + o = Jbe cos A

A= »»%—aiﬂ’ sin C

PartnerinLearning
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1

3
d_ AL St 1y , : .
Expess 25 3x?,+:;1x :5111 1> in the form ax*+br+c, where @, b and ¢ are
-2y
infegers.
| 22 4 2-3
,x*—2x+5)2x“-¥3x3 +57°2 +11x-15
23 -dxi4102?
=541z
¥ =2x 5%
-3xt462-15
~3x46x-15
M1 — Attermpt long division , Al ~all stepsare cotrect.
4_ g i, .8 _
Ee Mk e e Sk = N PG SN Al
X =2x+5
[ Turnover
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2

(@) Solve the inequality 2x° +8x +13 < 3a(x -2 .

_23 +hx +13<:-Jt1[x P

2t Ex H13€ I M1 (exp&mmn}
=x +12:;+13<DTu1t10n
¥ -12x-13>0 .

(x- 1:‘.}(}: >0 VV lt @I (factorisation)

(h)  &line hasequation y=x~7 and a curve has equation ¥ =3z° - 55 +1.

Determm whether the line intersects, is 4 tangent to, or does not intersect thi
ourve: Give a reason for your answer.

A =Sx el =x—T i, It
3t~ hx+8=0

bt —dac

=»i;-ﬁ)* — BB M1
=-60<[

Since the discriminant is less than zero, the line and the ctrve does not
meet. ... &1

PartnerinLearning
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(a)

h)

h

Factorise 8o + 1%,

St +5°
=(2a)’ +5°
=(2a +5)da’ — 2ab+b*)y ... N1, Al

Hence express E{\Ef f{Jz_?f' in the form mf3 , where m is ar irdeger.

Sub a=4ofF and b=4f27
8B +(ZT)

=[24’3‘ +J:ﬁ.][4{q€)* ~ BT +{Jﬁ}"‘] .......... MI{ subst tution)
=23 43B){12-18427) I ( siraplification of surds)
= 532
=105 Al

[ Twnover
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(@) Prove that

11
sinx+l sinx-1

=2y,

1 1
sinx+1 sinx-1
_ sin x =1 —(sin x+1) 1
e
-2
sin®x—1
L vl
1-cos*x-1
2
—cos’ x

&) Hence salve the equation ——- ~——r—

.+ Tuition

sin2x+l sm2x-1 _ . =1 .
2&5’? 2.3.' =3 ..... [T "4 "4 :
3
.2
sec’2x 5
i 2
008 2X == e vl

cosdx= 4%‘ ........... I 11

basic angle = 0615479

2x=061547, 252611, 375707, 566770..... M
x=0308, 126, 188, 283(1o3s).............Al
PartnerinLearning
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7

The point {-3,0} is a stationary point on the graph of p = »* +hx" +3x +k.

(a) Showthat A=35.

;%-:3):’ +2hx4+3 Bl
o dp _
sub x=-3 and prole
A-N¥+2h{-+3=0 ... Ml
27 -6h+3=0
-6 =-30
=5 A1

() Find thevalue of .

p=r+5x* +3x+k

Sub (~3,0)

(-3 +5(=3 +3(-3+ k=0
-27+45-9+k=0

PartnerinLearning
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(c) Find the x-coordinats of the other staticnary point.

et £o0
dx
AxPH10x43 =0 i 1
(x+3)(3x+1) =0
x = 3(gnven) or’x=—-;— ................ Al

Tuition

(@) Deterraine the nature of each of these stationary points.

2
B2 650
d?y : o N ,
When x = —3,a;= —2< 0. Itis a maximum point. ......... Bl
' _ 1 dYy o
When x=—-3-,TT=E>D. Itis & minimuem point. ... Bl
3 dx

Accept the first derivattve test using change in the gradients.
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(a)

()

Express 6dns+ 1Dooss in the form Rsinfs+ ), where &> 0 and

D{a{%‘radians.

6sinif +10cosf = Rsin{f +a)
= Reinfcosa + Rroosfsin
Reosx=6 and Rainax=10

R=ol*+10° ... M1

R= »Ji 36 or2yf3d
fan = IEU- ....................... IvIl
e=1.0303 radians
Gsing +10c0sf = 2B sm(F +1.03) . .. A1

Ths oscillation of a mass attached 1o a spring canbe modelled by
x=6gint +10cosf, where x mm is the distance of the mass from its rest

position A at tirae ¢ secnnds

(D Fxplain whether the mass can reach a distance of 18 run from A

Sinee maximum value of 'ﬁln{fﬂ 03) = 1, maziraum value of

x=4J136 =11.661, sa it is not possible for the mass to reachadlstaru:e
r:nf'lSnun et et At Bl
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(i) Find the time when the mass first reaches the maximurn distance

fiom A
Let sinff +1.03 =1 ... ML
H‘,,I' 03=15707 |
F=0540 8 to3sD) o A1

i) After howraany seconds does the mass%'mt neach a Be:ght of & mm frora A ?

LetJIZ6 sinft +1 03)=8 ........ .o A SO, ¥ W14
sin{f+1.03) =063599 @pI®
£+1.03=075506, 2385853 ........ et M1
{ angles in 1stand 2nd quadrants)
§ =0 274(rejected) , 136 s { to 3L} ...... &1
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Sohutions to this g uestion hy accurate drawing will nothe accep ted.

The coordinates of the points A, B and Care {2,-4), {24 +2, 4} and{-3 1}
respectrvely. The area of the tiangle ABCis 32.5 units?,

(a) Civenthate =0, showthate=3. [
112 2e+2 -3 2| _
s o ik B2 s k|
2a+2a+2+H12-(Ba-8-3a+N=65 ... M
15a+20 =65
15a=45 e, i
B =3 e Al
(b) Find the coordinates of the point when the line AC meets the x-axis. 2]

Az~ A3
_ 1

x=-2

JTurnover
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(c) Find the equation of the perpe ndicular bisector of BC.

B33 Q-30)
-1

ms= E i SN vl
2
11
Midpoint = [-?—;—E,E%lJ ................. VIl

equation is p =—“-1§1-;r.+%3 ory =-553x+1575 ... AL
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A piece of wire of length 100 cm is bent into the shape of a trapezium PORS.
Given that PQ = SR =x cm, ZPQA=/SRB =60 and PABS is a rectangle.

~
o2}

X €rm

6!&

L

] P

100 -3x

(a) Show that PS = [3]

OA===RB

. Tuition
2x+2[-—)+ 2PS =100,.....p....

Wit

3x+2PS =100

pS =1_00—3x

[ Turn over
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(h) Show that the area of the tectarigle ABSP, A oo, isgivenby
ﬂ:ﬁ(lﬂﬂx =3x%).
S
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BP-74

(c) Civenthat xcanvary, find the value of x for which A is maximurm. (4

v
A="r(100x-35")

Le ad ‘ﬁ-(lﬂﬂ ~6x) =0

N s, i

dx

o2& Tuitidh

dr’
“Therefore A is a maxirmum value.

[ Tarn over

PartnerinLearning
72



BP-75

16

9  The diagram shows the line y = x+3 intersecting the curve y=—x’ +2x" +5at the
point.4(2,5).
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Show that the curve y =—2° +2x° +5 intersects the line v = x+3at onlyong
point A(2,5).

428 5= 143
P2t +x-2=0
Since the line and curve cutsat A, it shows that (x -2)isa factor.

a1ultion

2}:: N L S S :
xi=2y KV%VT 7 

x—2
2

X i,
=

¥-2x 4+ x-2=0

(x=22 4+ =0 i, ol

x=2aor x'=-l

Since x* cannot be negative, there is no solufion forx® =-1 ... .Bl
and the lin and curve intersects only at one point 4.

[ Turn over
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Find the area of the shaded region.

Area under curve =J':(-_f +2x% +5) dx

~yt 2 T
=t ——F5T| s
[ 4 3 53{]:& |
=3 Al
3
Airea under lire = %{3 KDY o M1
=8
Area of shaded regmn:—é—_—-g .............. Wil
m 1 .,
= —=3— .
3 33 nnits 1
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