
Web Applications
Name: __________________________ () Class: _________ Date: _________

Lesson 4: Using Flask

Instructional Objectives:

By the end of this task, you should be able to:

● Use the flask.Flask() constructor to create a Flask application

● Use the flask.Flask.route() decorator to associate functions with either a

static path or a path containing one or more variable sections

● Use flask.Flask.run() to start a Flask application

● Use flask.render_template() to simplify sending of long HTML responses

● Use flask.redirect() to send a HTTP 302 (Found) status code and have

the browser request a different address

● Use the flask.request.form dictionary to retrieve decoded form data

● Use the Jinja2 template language and flask.url_for() to dynamically

generate links and URLs in HTML responses

Part 1: Dynamic Web Pages

Although we can use the web to simply request for and retrieve static HTML and
CSS documents, the web becomes much more useful if the web server can
customise its response to each HTTP request. For example, the following program
uses what we have learnt so far about sockets, HTTP, HTML and CSS to generate a
web page with random colours and text every time it is requested.

Program 1: p01_server_without_flask.py

1
2
3
4
5
6
7

import random
import socket

HTTP uses \r\n to end lines instead of \n.
EOL = b'\r\n'

List of possible colours.

CPDD Computer Education Unit Version: Nov 2018
1

Web Applications
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

COLOURS = [
'red', 'orange', 'blue', 'purple',
'#C0C000', # dark yellow
'#00C000' # dark green

]

List of possible messages.
MESSAGES = ['Hello, World!', 'Computing is Fun', 'Alamak!']

Start listening for web browser requests on port 8000.
listen_socket = socket.socket()
listen_socket.bind(('127.0.0.1', 8000))
listen_socket.listen()

def handle_request(new_socket):
Keep loading request until end of first line (\r\n).
request = b''
while EOL not in request:

received = new_socket.recv(1024)
if received == b'':

new_socket.close()
return

request += received

Extract first line and split it into three.
Requested path is always the second part.
index = request.index(EOL)
first_line = request[:index].decode()
path = first_line.split()[1]

Start response with standard HTTP status line.
response = b'HTTP/1.1 200 OK' + EOL

Generate CSS document for response if path is '/css'.
Otherwise, generate HTML document for response.
if path == '/css':

Generate CSS document.
border_colour = random.choice(COLOURS)
text_colour = random.choice(COLOURS)
body = 'p {{ border: 5px solid {0}; color: {1};'
body += 'font-size: 72px; padding: 20px; }}'
body = body.format(border_colour, text_colour)
body = body.encode()

Append HTTP header fields to response.
response += b'Content-Type: text/css' + EOL
response += b'Content-Length: '
response += str(len(body)).encode() + EOL

CPDD Computer Education Unit Version: Nov 2018
2

Web Applications
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

else:
Generate HTML document.
msg = random.choice(MESSAGES)
body = '<!DOCTYPE html>\n<html>'
body += '<head><title>{0}</title>'
body += '<link rel="stylesheet" href="/css"></head>'
body += '<body><p>{0}</p></body></html>'
body = body.format(msg).encode()

Append HTTP header fields to response.
response += b'Content-Type: text/html' + EOL
response += b'Content-Length: '
response += str(len(body)).encode() + EOL

Append empty line to response.
response += EOL

Append document as message body.
response += body

Send the response and close the socket.
new_socket.sendall(response)
new_socket.close()

while True:
new_socket, addr = listen_socket.accept()

handle_request(new_socket)

Run the program in the background, then view http://127.0.0.1:8000/ in a web
browser. Reload the browser a few times to see the web page’s text and colours
change each time:

How does the program work?

1. Lines 17 to 20 start the server by listening on port 8000.

CPDD Computer Education Unit Version: Nov 2018
3

Web Applications
2. When a web browser visits http://127.0.0.1:8000/, it sends a HTTP

request via the new socket that is returned by accept() on line 83. The new
socket is then passed to the handle_request() function on line 23.

3. Lines 24 to 37 read the HTTP request until a line ending is detected.
However, if recv() ever returns an empty bytes object, the connection has
been closed so the program stops processing the request immediately.
Otherwise, it extracts the path component from the first line of the request.

4. Line 40 starts a new HTTP response with only a status line.

5. If path matches '/css' exactly, lines 45 to 51 generate a CSS document
using random colours and store it in body. Lines 53 to 56 then generate the
required HTTP header fields and append them to the response.

6. Otherwise, lines 58 to 64 generate a HTML document containing a random
phrase and store the HTML document in body. Lines 66 to 69 then generate
the required HTTP header fields and append them to the response.

7. Regardless of whether a CSS or HTML document was generated, lines 71 to
78 end the header fields with an empty line, append the generated document
to the response and send the completed response back to the web browser.

8. Finally, line 79 closes the socket so the server can handle the next HTTP
request and so on until Ctrl-C is pressed.

Writing dynamic web pages in this way can be complex and tedious. In particular,
p01_server_without_flask.py requires the programmer to parse or construct
HTTP request/status lines and header fields to follow the HTTP standard. It also
requires the programmer to assemble long pieces of HTML and CSS code from
Python strings.

Instead of having the programmer spend time on these tedious and error-prone
tasks, it is usually better to use a framework instead. A framework is typically a
module or library with ready-made generic solutions that a programmer can
selectively override to customise certain behaviours. This lets the programmer get
more done in less time as the framework already provides a working solution that the
programmer only needs to configure or customise for his or her needs.

1 The following program runs a web server at http://127.0.0.1:5000/ that
simply repeats the first line of each HTTP request back to the browser.

import socket

EOL = b'\r\n'

listen_socket = socket.socket()
listen_socket.bind(('127.0.0.1', 5000))

CPDD Computer Education Unit Version: Nov 2018
4

Web Applications
listen_socket.listen()

def handle_request(new_socket):
request = b''
while EOL not in request:

received = new_socket.recv(1024)
if received == b'':

return
request += received

index = request.index(EOL)
first_line = request[:index]

response = b'HTTP/1.1 200 OK' + EOL
response += b'Content-Type: text/plain' + EOL
response += b'Content-Length: '
response += str(len(first_line)).encode() + EOL
response += EOL
response += first_line

new_socket.sendall(response)
new_socket.close()

while True:
new_socket, addr = listen_socket.accept()

handle_request(new_socket)

Run the program and visit each of the URLs below to tabulate the output that
is displayed in the browser. An example has been completed for you.

No. URL Output

e.g. http://127.0.0.1:5000/hello GET /hello HTTP/1.1

1 http://127.0.0.1:5000/

2 http://127.0.0.1:5000/100/200

3 http://127.0.0.1:5000/200/300/

4 http://127.0.0.1:5000//300//400//

5 http://127.0.0.1:5000/?key=value

CPDD Computer Education Unit Version: Nov 2018
5

Web Applications

6 http://127.0.0.1:5000/#fragment

7 http://127.0.0.1:5000/?key#hash

Part 2: The Flask Framework

To create dynamic web sites, we can use a web application framework named Flask.
Unlike the other libraries and modules that we have used so far, Flask is not built into
Python and typically needs to be installed separately. However, it should already be
installed for you in the computers at your school.

To check if Flask is installed, run the following line of Python (bold text only):

>>> import flask

If you get an error on your home computer, you may need to install Flask by starting
Command Prompt or PowerShell as an administrator and running (bold text only):

PS C:\Users\user> pip3 install flask

To run the above command successfully, you must have Internet access and Python
must be included in your PATH, which is the list of directories that Command Prompt
or PowerShell automatically searches through when looking for a command. Search
the Internet or ask your teacher for help if you are unable to install Flask on your
own.

Without any customisations, Flask already provides a basic web server that correctly
implements HTTP and its many requirements. To create and run this basic web
server, we need to create a flask.Flask object with the module’s __name__ as an
argument and call the object’s run() method, like in the following program:

Program 2: p02_minimal.py

1
2
3
4
5
6

import flask

app = flask.Flask(__name__)

if __name__ == '__main__':
app.run()

When this program is run, you should see some start-up messages that indicate the
server can be accessed at http://127.0.0.1:5000/. However, as the default web

CPDD Computer Education Unit Version: Nov 2018
6

Web Applications
server is not configured to recognise any paths yet, you will receive a 404 (Not
Found) error when you visit that URL using a web browser. Nevertheless, you should
notice that Flask already provides a complete web server that correctly implements
HTTP without additional work from the programmer.

Note that 5000 is just the default port number used by Flask. To use another port
number, call the run() method with a different port argument. For example, to use
port 12345 instead, we would replace line 6 with:

app.run(port=12345)

Technical Note

The latest version of Flask (1.0) and IDLE have a known incompatibility that
causes an io.UnsupportedOperation: fileno error to occur when calling
app.run() on Windows. To work around this issue, use Flask 0.12 instead. To
replace your current version of Flask, start Command Prompt or PowerShell as
an administrator and run (bold text only):

PS C:\Users\user> pip3 install flask==0.12

An appropriate version of Flask should already be installed on your school's
computers.

To stop the Flask server, press Ctrl-C in the IDLE's shell window or restart the shell
by running Ctrl-F6.

Part 3: HTTP Requests and Routing

The first and most important way to customise the web server that Flask provides is
to configure which paths are recognised. Recall that each HTTP request starts with a
request line specifying a method and a path as well as the version of HTTP being
used. Whether a HTTP request succeeds typically depends on whether the path
refers to a web document that is recognised by the server and whether the method
used is allowed for that web document.

For example, suppose a HTTP server is running on 127.0.0.1 and listening on port
5000. When we visit http://127.0.0.1:5000/readme.txt, the browser sends a
HTTP request with a first line that contains the path /readme.txt, like so:

GET /readme.txt HTTP/1.1

Note that even though HTTP paths such as /readme.txt look similar to file paths
that we may use to open and save files in Windows or macOS, to a web server they

CPDD Computer Education Unit Version: Nov 2018
7

Web Applications
are just strings and do NOT need to refer to real files or folders that are stored on the
computer. For instance, in this example there does not need to be a real file named
readme.txt for the web server to provide a valid response. Another example is how
some web servers dynamically generate an HTML error page when we visit a URL
that the server does not recognise.

To handle HTTP requests, we can map specific paths to Python functions. For
instance the path / can be mapped to a function named home() and /readme.txt
can be mapped to a function named readme(). When a HTTP request is received,
Flask examines the received path and looks for a mapping. If a mapping is found,
Flask runs the associated Python function to generate a response. Otherwise, no
mapping is found and a 404 (Not Found) status code is produced instead.

This process is called routing and it is similar to how phone operators forward calls
to different departments based on each caller's needs. Similarly, each HTTP request
is routed to a Python function for processing based on the requested path and
method used. Each mapping of a path to a Python function is called a route.

To declare a route and associate a path to a Python function, we use a feature of
Python called decorators. In Python, decorators let us alter the behaviour of a
function without modifying its source code. We do this by adding decorations
immediately before the function's definition. Each decoration starts with an at-sign or
“pie” symbol @ followed by a decorator. For Flask, we typically use decorators that
are generated using the route method of the main Flask object named app, as
demonstrated on lines 5, 9 and 13 of the following example:

Program 3: p03_simple_routes.py

CPDD Computer Education Unit Version: Nov 2018
8

Web Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

import flask

app = flask.Flask(__name__)

@app.route('/')
def home():

return 'Welcome'

@app.route('/report')
def generate_report():

return 'Everything is awesome'

@app.route('/readme.txt')
def readme():

return 'READ ME'

if __name__ == '__main__':
app.run()

Run 03_simple_route.py and visit http://127.0.0.1:5000/readme.txt to see
the message "READ ME" returned by the readme() function. This works because
the path /readme.txt is mapped to readme() by the decoration on line 13.
Similarly, if we visit http://127.0.0.1:5000/, we see the message "Welcome" and
if we visit http://127.0.0.1:5000/report, we see the message "Everything is
awesome". However, visiting any other URL that starts with
http://127.0.0.1:5000/ (For example http://127.0.0.1:5000/nothing)
results in a 404 (Not Found) error as no other paths have been mapped.

The next example uses multiple decorators to declare a variety of routes:

Program 4: p04_complex_routes.py

1
2
3
4
5
6
7
8
9

import flask

app = flask.Flask(__name__)

@app.route('/')
def index():

return 'Routed to index()'

@app.route('/css')

CPDD Computer Education Unit Version: Nov 2018
9

Web Applications
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

def css():
return 'Routed to css()'

@app.route('/no_slash')
def no_slash():

return 'Routed to no_slash()'

@app.route('/optional_slash/')
def optional_slash():

return 'Routed to optional_slash()'

@app.route('/one/')
@app.route('/one/two/')
@app.route('/three/two/one')
def multiple():

return 'Routed to multiple()'

@app.route('/string/<s>/')
def string_variable(s):

return 'Routed to string_variable(), s = {}'.format(s)

@app.route('/integer/<int:i>/')
def integer_variable(i):

return 'Routed to integer_variable(), i = {}'.format(i)

@app.route('/post_only/', methods=['POST'])
def post_only():

return 'Routed to post_only()'

if __name__ == '__main__':
app.run()

Fixed Routes

Run 04_complex_routes.py and visit http://127.0.0.1:5000/ with a web
browser. You should see a simple page with the message "Routed to index()"
indicating that your request was handled by the index() function defined on lines 6
to 7. This is because the path component of http://127.0.0.1:5000/ is just a
slash character /, which matches the route specified on line 5 for the index()
function.

Now visit http://127.0.0.1:5000/css and you should see the message "Routed
to css()" instead. In this case, the path component of http://127.0.0.1:5000/css
is just /css, which matches the route specified on line 9. Hence, the request is
handed over to the corresponding css() function defined on lines 10 and 11.

Note that routes are case-sensitive, so visiting http://127.0.0.1:5000/CSS
instead of http://127.0.0.1:5000/css would lead to a 404 Not Found error.

CPDD Computer Education Unit Version: Nov 2018
10

Web Applications

Trailing Slashes

In general, a request's path and a route's path must match exactly for the route to
be chosen. For instance, the route for /no_slash on line 13 is matched only by
http://127.0.0.1:5000/no_slash (without a trailing slash). If we try visiting
http://127.0.0.1:5000/no_slash/ (with a trailing slash), we will get a 404 (Not
Found) error instead.

However, if Flask fails to find a route for a path that does NOT end with a slash, it will
append a slash to the path and try again before giving up completely. For instance,
both http://127.0.0.1:5000/optional_slash (without a trailing slash) and
http://127.0.0.1:5000/optional_slash/ (with a trailing slash) both match the
route for /optional_slash/ and will run the associated optional_slash()
function.

Multiple Decorators

If needed, multiple paths can also be routed to the same function. For instance, the
three decorations on lines 21 to 23 associate all of the following URLs with the
multiple() function defined on lines 24 and 25:

● http://127.0.0.1:5000/one/
● http://127.0.0.1:5000/one/two/
● http://127.0.0.1:5000/three/two/one

Note that trailing slashes are treated in exactly the same way as described
previously, so http://127.0.0.1:5000/three/two/one/ will result in a 404 (Not
Found) error since there is no route that matches /three/two/one/ (with a trailing
slash) exactly.

Variable Routes

Flask routes can also have variable parts. Each variable part in the route's path has
a name surrounded by angled brackets < and >. By default, each variable part
matches any non-empty sequence of characters that does not contain a slash /. The

CPDD Computer Education Unit Version: Nov 2018
11

Web Applications
route is matched if all variable parts in the path can be matched in this way. When
this happens, the variable parts are extracted into str values and passed to the
associated Python function as keyword arguments.

For instance, line 27 defines a route specified by '/string/<s>/' that contains one
variable part named s. This route matches any path starting with /string/ followed
by 1 or more non-slash characters and an optional trailing slash. If a match is found,
the variable part is extracted into a str value and passed to the function
string_variable() as a keyword argument named s. Otherwise, Flask will try to
find another route that matches, returning a 404 (Not Found) error if none can be
found.

The following table tabulates some URLs that match the '/string/<s>/' route and
some URLs that do not. Note how the variable s cannot be matched to an empty
string or any portion of the path that contains a slash /,

URL Result Content of Variable s
http://127.0.0.1:5000/string/hello/ 200 OK hello
http://127.0.0.1:5000/string/hello 200 OK hello
http://127.0.0.1:5000/string/123 200 OK 123
http://127.0.0.1:5000/string/ 404 Not Found
http://127.0.0.1:5000/string/hi/there 404 Not Found
http://127.0.0.1:5000/string// 404 Not Found

Variable parts can also specify a converter using the syntax <converter:name> to
modify the matching algorithm and convert the matched string to another type before
being passed over to the function as a keyword argument.

For instance, line 31 defines a route specified by '/integer/<int:i>' with one
variable part named i that uses the int converter. The int converter modifies the
matching algorithm for i so only digits (i.e., 0 to 9) are accepted. This means that
only paths that start with /integer/ followed by 1 or more digits and an optional
trailing slash will result in a match.

If a match is found, the digits portion of the path is extracted and converted to an int
before being passed to the integer_variable() function as an int parameter.
Otherwise, the match fails and Flask will try to find another route that matches,
returning a 404 (Not Found) if no matching route can be found.

CPDD Computer Education Unit Version: Nov 2018
12

Web Applications

URL Result Content of Variable i
http://127.0.0.1:5000/integer/123/ 200 OK 123
http://127.0.0.1:5000/integer/123 200 OK 123
http://127.0.0.1:5000/integer/0 200 OK 0
http://127.0.0.1:5000/integer/ 404 Not Found
http://127.0.0.1:5000/integer/-123 404 Not Found
http://127.0.0.1:5000/integer/one 404 Not Found

Note that as the int converter only accepts digits, negative integers that start with a
minus sign CANNOT be matched by <int:i>.

2 Complete the following program so it greets the user when the site is visited
with the user's name in the path (as long as the name does not include a
slash):

import flask
app = flask.Flask(__name__)

def home():
return 'Hello, {}!'.format()

if __name__ == '__main__':
app.run()

Routing by HTTP Methods

Besides matching based on paths, each route can also specify if it only applies to
GET requests, POST requests or both. Recall that GET is used to retrieve data without
making changes while POST is used to submit or make changes to the server's data.
To comply with this definition, a route for something that changes the server's data
permanently (e.g., deletion) should not be accessible using GET. In other words, a
user should not be able to add, delete or update data on the server without
submitting a form and sending a POST request instead.

To limit the HTTP methods accepted by a route, we pass in a list of permitted HTTP
methods as a keyword argument named methods in the decorator. For instance, line
35 specifies a route for /post_only that is only accessible using POST. If we try to
access http://127.0.0.1:5000/post_only using GET by entering it directly into the
address bar of a web browser, we get a 405 (Method Not Allowed) error instead.

CPDD Computer Education Unit Version: Nov 2018
13

Web Applications

To produce a POST request, we need to reach the route by submitting a HTML form.
This will be demonstrated later in this lesson.

Generating Paths from Function Names

Routes provide a mapping from paths to Python functions. However, we often need
to go in the opposite direction and generate the path for a given Python function. To
do this, we call the url_for() function in the flask module and pass it a string with
the function's name. If the path has any variables (e.g. s in "/string/<s>"), they
should be provided as keyword arguments to url_for().

The following example specifies some routes and prints three generated paths in the
shell or command prompt window when the "root" site http://127.0.0.1:5000/ is
visited. Notice how url_for() is used on lines 8 to 10.

Program 5: p05_url_lookup.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

import flask
from flask import url_for

app = flask.Flask(__name__)

@app.route('/')
def home():

url1 = url_for('fixed_route')
url2 = url_for('string_variable', s='example')
url3 = url_for('integer_variable', i=2020)
print(url1)
print(url2)
print(url3)
return 'Check your shell or command prompt window'

@app.route('/fixed/')
def fixed_route():

return 'Routed to fixed()'

@app.route('/string/<s>')
def string_variable(s):

CPDD Computer Education Unit Version: Nov 2018
14

Web Applications
22
23
24
25
26
27
28
29

return 'Routed to string_variable(), s = {}'.format(s)

@app.route('/integer/<int:i>')
def integer_variable(i):

return 'Routed to integer_variable(), i = {}'.format(i)

if __name__ == '__main__':
app.run()

The expected output for 05_url_lookup.py is as follows (you may need to look for
these lines among the other logging output from Flask):

/fixed/
/string/example
/integer/2020

These correspond to calling fixed_route(), string_variable(s='example')
and integer_variable(i=2020) respectively.

3 The following program runs a web server at http://127.0.0.1:5000/.

import flask

app = flask.Flask(__name__)

NAMES = [
'January', 'February', 'March', 'April',
'May', 'June', 'July', 'August',
'September', 'October', 'November', 'December'

]

@app.route('/')
def home():

return 'Home'

@app.route('/<int:month>/')
def name_month(month):

if month in range(1, 13):
return 'Month {}: {}'.format(month, NAMES[month - 1])

return 'Invalid month'

@app.route('/compare/<float:temp>/')
def compare_temp(temp):

if temp > 35.5:
return 'It\'s hot!'

if temp < 25.5:

CPDD Computer Education Unit Version: Nov 2018
15

Web Applications
return 'It\'s cold!'

return 'It\'s normal!'

@app.route('/greet/')
def greet():

return 'Hello!'

@app.route('/greet/<name>/')
def greet_name(name):

return 'Hello, {}!'.format(name)

@app.route('/data/', methods=['POST'])
def post_data():

return 'You are using POST'

@app.route('/data/', methods=['GET'])
def get_data():

return 'You are using GET'

if __name__ == '__main__':
app.run()

With this program running in the background, predict the output when each of
the URLs below is visited using a browser. If you predict that a HTTP error
would occur instead, write "ERROR" as the output.

No. URL Output

1 http://127.0.0.1:5000/

2 http://127.0.0.1:5000/10

3 http://127.0.0.1:5000/10/20/

4 http://127.0.0.1:5000/20/

5 http://127.0.0.1:5000/compare/35.4

6 http://127.0.0.1:5000/compare/35.6/

7 http://127.0.0.1:5000/compare/

CPDD Computer Education Unit Version: Nov 2018
16

Web Applications

8 http://127.0.0.1:5000/greet/world/

9 http://127.0.0.1:5000/greet/worLD/

10 http://127.0.0.1:5000/Greet/world/

11 http://127.0.0.1:5000/greet/Mei Yi/

12 http://127.0.0.1:5000/greet/

13 http://127.0.0.1:5000/data/

After completing the table, visit the URLs to check your answers.

Part 4: HTTP Responses and Status Codes

So far, our functions have been returning short strings that appear to display without
problem in the web browser. However, Flask has actually been prepending various
headers behind the scenes to produce valid HTTP responses.

Run the following program:

Program 6: p06_hello_world.py

1
2
3
4
5
6
7
8
9
10

import flask

app = flask.Flask(__name__)

@app.route('/')
def index():

return 'Hello, World!'

if __name__ == '__main__':
app.run()

With Google Chrome's Developer Tools open, visit http://127.0.0.1:5000/ and
examine the response headers. You should see that Flask has actually added
various headers to form a complete HTTP response.

CPDD Computer Education Unit Version: Nov 2018
17

Web Applications

Together with the content, the complete HTTP response sent to your browser is
similar to the following:

HTTP/1.0 200 OK
Content-Type: text/html; charset=utf-8
Content-Length: 13
Server: Werkzeug/0.14.1 Python/3.7.0
Date: Tue, 22 Jan 2019 08:01:52 GMT

Hello, World!

Notice that Flask assumes that our output has a Content-Type of "text/html". This
means that Flask actually expects our function to return a full HTML document and
not just a plain string. However, most browsers are very forgiving and will treat our
string as a snippet of HTML intended for the document's <body>. For instance, the
following program demonstrates that HTML tags can be used in our return value:

Program 7: p07_returning_html.py

1
2
3
4
5
6
7
8
9
10

import flask

app = flask.Flask(__name__)

@app.route('/')
def index():

return '<h1>Welcome!</h1> Hello, <i>World!</i>'

if __name__ == '__main__':
app.run()

CPDD Computer Education Unit Version: Nov 2018
18

Web Applications

However, be aware that is non-standard behaviour and our functions that are
mapped to routes should really return full HTML documents.

Changing the Status Code

By default, Flask also assumes that our responses have a HTTP status code of 200
(OK). This is usually what we want, but if needed we can override this by returning a
tuple instead of just a string. The replacement HTTP status code should be provided
as the second item of the tuple, as demonstrated on line 7 of the following example:

Program 8: p08_returning_status_500.py

1
2
3
4
5
6
7
8
9
10

import flask

app = flask.Flask(__name__)

@app.route('/')
def index():

return ('', 500)

if __name__ == '__main__':
app.run()

Recall that a HTTP status code of 500 represents an Internal Server Error. If we run
this program and try to visit http://127.0.0.1:5000/, we should be greeted with
an HTTP 500 (Internal Server Error) status code, as expected:

CPDD Computer Education Unit Version: Nov 2018
19

Web Applications

Changing the Response Headers

We can also add additional response headers by putting them into a Python
dictionary and returning this dictionary as the third item of our return tuple. For
instance, if we want the web browser to treat our response as plain text instead of
HTML, we can replace the Content-Type header value with "text/plain" instead:

Program 9: p09_returning_plain_text.py

1
2
3
4
5
6
7
8
9
10
11

import flask

app = flask.Flask(__name__)

@app.route('/')
def index():

headers = {'Content-Type': 'text/plain'}
return ('This is not HTML!', 200, headers)

if __name__ == '__main__':
app.run()

Running this program and visiting http://127.0.0.1:5000/ demonstrates that the
string we return is no longer treated as HTML by the browser:

CPDD Computer Education Unit Version: Nov 2018
20

Web Applications

Redirecting to Another URL

Besides overriding the HTTP status code and response headers, Flask also lets us
generate a response that tells the web browser to load a different URL instead. This
is called a redirect and is useful when the location of a document has moved or
when we want to let another Flask route take over the handling of a request. To
perform a redirect, import the redirect() function from the flask module and call it
with the destination URL or path that as the first argument. Then, use the response
generated by redirect() as the return value of the function, as in the following
example:

Program 10: p10_redirect_example.py

1
2
3
4
5
6
7
8
9
10
11

import flask
from flask import redirect

app = flask.Flask(__name__)

@app.route('/')
def index():

return redirect('http://example.com')

if __name__ == '__main__':
app.run()

Instead of redirecting to an external site, we usually want to redirect the user to
another of our routes instead. In such cases, we should use url_for() to look up
the correct path based on the function that we want to reach:

Program 11: p11_redirect_using_url_for.py

1
2
3
4
5
6
7
8

import flask
from flask import redirect, url_for

app = flask.Flask(__name__)

@app.route('/new_url/')
def moved_index():

return 'You have reached the new URL!'

CPDD Computer Education Unit Version: Nov 2018
21

Web Applications
9
10
11
12
13
14
15

@app.route('/')
def index():

return redirect(url_for('moved_index'))

if __name__ == '__main__':
app.run()

Notice how url_for() is used to look up the path for redirect() on line 12 instead
of hardcoding the redirected path as a string.

Part 5: Templates and Rendering

Instead of returning short HTML snippets or redirecting users, the following program
illustrates how we can return full HTML documents complete with headings and
hyperlinks in our Flask application:

Program 12: p12_html_response_without_templates.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

import flask

app = flask.Flask(__name__)

@app.route('/')
def home():

html = '<!DOCTYPE html>\n<html>'
html += '<head><title>Home Page</title></head>'
html += '<body><h1>Welcome to my home page!</h1>'
html += '<p>My favourite web site is '
html += ''
html += 'example.com.</p>'
html += '<p>You can greet Alex '
html += 'here.</p>'
html += '</body></html>'
return html

@app.route('/greet/<name>/')
def greet(name):

html = '<!DOCTYPE html>\n<html>'
html += '<head><title>Greetings!</title></head>'
html += '<body><h1>Hello, {}!</h1>'.format(name)
html += '</body></html>'
return html

if __name__ == '__main__':

CPDD Computer Education Unit Version: Nov 2018
22

Web Applications
27 app.run()

Run the above program and visit http://127.0.0.1:5000/. Notice that a full HTML
page appears, complete with a page title, headings and hyperlinks. Use the View
Source feature by pressing Ctrl-U to verify that the HTML for the page comes directly
from the home() function of the above Python program.

Now visit http://127.0.0.1:5000/greet/Siti/. Notice that the result has a page
title and the greeting for Siti is formatted to look like a heading using the <h1> tag.

Why Use Templates?

Generating dynamic HTML content in this way is powerful but also dangerous.
Notice that in the greet_name() function we inserted the name variable into our
output without checking its contents. This lets a malicious user inject his or her own
code into the output and potentially cause all kinds of mischief.

For instance, if we follow the following link:

http://127.0.0.1:5000/greet/enter%20password:%20<input><h1>Thanks/

CPDD Computer Education Unit Version: Nov 2018
23

Web Applications
We will get what appears to be a legitimate form asking for the user's password.
However, in reality, the form does not come from our application at all and was
injected into the page from HTML code in the URL's path.

Besides possible security issues, constructing HTML documents by joining Python
strings can also become quite messy. For instance, it is easy to be confused
between the use of HTML and Python in the home() and greet_name() functions.

This is why, in practice, we usually do not generate HTML responses by manually
manipulating strings in Python code. Instead, we put the HTML content in a separate
file called a template with placeholders for where the dynamic content should be
inserted. Whenever we need to output HTML, we use a template engine to load the
template and fill in the placeholders. The template engine also helps to escape
special characters such as < and > when filling in the placeholders so that HTML
injection similar to the case above is avoided. This process of filling in the
placeholders to produce the final HTML that is used for the response is called
rendering.

The Jinja2 Template Engine

Flask provides a built-in template engine named Jinja2. By default, Flask expects all
templates to be located in a subfolder named templates.

To start using Jinja2, create a subfolder named templates In the folder where your
Flask programs are stored, then save the following file in this folder as home.html:

Template 1: templates/home.html

1
2
3
4
5
6
7
8
9
10
11
12

<!DOCTYPE html>
<html>
<head><title>Home Page</title></head>
<body>
<h1>Welcome to my home page!</h1>
<p>My favourite web site is

example.com.</p>
<p>You can greet Alex

here.
</p>

</body>
</html>

CPDD Computer Education Unit Version: Nov 2018
24

Web Applications

Also save the following file in the templates folder as greet.html:

Template 2: templates/greet.html

1
2
3
4
5
6
7

<!DOCTYPE html>
<html>
<head><title>Greetings!</title></head>
<body>
<h1>Hello, {{ visitor }}!</h1>
</body>
</html>

In a Jinja2 template, placeholders are surrounded by double braces and have the
form {{ expression }} where expression is a Jinja2 expression. When using
templates, be careful not to confuse Jinja2 expressions with Python expressions.
Although they are very similar, Jinja2 expressions and Python expressions have
different syntaxes and operate in different environments. For instance, len() and
many other standard Python functions are not available in Jinja2 expressions. You
will learn more about the differences between Jinja2 and Python in the following
sections.

Recall that the process of filling in the placeholders of a template is called
rendering. The task of rendering a template is typically performed by a function
named render_template() that can be imported from the flask module, like so:

Program 13: p13_html_response_with_templates.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

import flask
from flask import render_template

app = flask.Flask(__name__)

@app.route('/')
def home():

return render_template('home.html')

@app.route('/greet/<name>/')
def greet(name):

return render_template('greet.html', visitor=name)

if __name__ == '__main__':
app.run()

CPDD Computer Education Unit Version: Nov 2018
25

Web Applications
Run this program and visit http://127.0.0.1:5000/. View Source on the page by
pressing Ctrl-U to verify that the template is indeed rendered and no placeholders
are present. Click the link to visit http://127.0.0.1:5000/greet/Alex/ and verify
that there are no placeholders in its HTML source as well.

Passing Values to Templates

The render_template() function accepts the name of a template in the templates
subfolder as its first argument, followed by 0 or more keyword arguments assigning
values to Jinja2 variables that may be used by the template.

For instance, line 12 of p13_html_example_with_templates.py renders a
template named greet.html and specifies that within the template, the value of
name should be assigned to a Jinja2 variable named visitor. This corresponds to
line 5 of greet.html where the Jinja2 placeholder {{ visitor }} is replaced by
this value.

Do not confuse Jinja2 variables with Python variables. If render_template() is
called without any keyword arguments, values from the Python environment are
NOT passed to the template. To use Python values in the generated HTML, we must
pass them over as keyword arguments when render_template() is called.

CPDD Computer Education Unit Version: Nov 2018
26

Web Applications
The following diagram illustrates how render_template() retrieves a template file
and replaces its placeholders to produce the final HTML that is sent to the browser:

4 Create the following four templates and save them in a templates/ subfolder:

templates/A.html

<!doctype html>
<html>
<head><title>A</title></head>
<body>A</body>
</html>

templates/B.html

<!doctype html>
<html>
<head><title>B</title></head>
<body>B</body>
</html>

templates/C.html

<!doctype html>
<html>
<head><title>C</title></head>

CPDD Computer Education Unit Version: Nov 2018
27

Web Applications
<body>C</body>
</html>

templates/D.html

<!doctype html>
<html>
<head><title>D</title></head>
<body>D</body>
</html>

Each template is meant to be shown for a different URL:

URL Template to use
http://127.0.0.1:5000/A A.html
http://127.0.0.1:5000/B B.html
http://127.0.0.1:5000/C C.html
http://127.0.0.1:5000/D D.html

Complete the following program accordingly:

app.py

import flask
app = flask.Flask(__name__)

def view_A():
return flask.render_template('A.html')

def view_B():
return flask.render_template('B.html')

def view_C():
return flask.render_template('C.html')

def view_D():
return flask.render_template('D.html')

if __name__ == '__main__':
app.run()

5 Generalise the previous program and templates so that the application only
needs one template instead of four templates:

templates/template.html

CPDD Computer Education Unit Version: Nov 2018
28

Web Applications
<!doctype html>
<html>
<head><title> </title></head>
<body> </body>
</html>

app.py

import flask
app = flask.Flask(__name__)

def view():
return flask.render_template('template.html',

)

if __name__ == '__main__':
app.run()

Notice that this application allows other combinations of URL, for example:
http://127.0.0.1:5000/BBB, http://127.0.0.1:5000/q.

Go further! Edit the program above so only the four cases given in Question 4 are
allowed and return error code 500 for other cases.

Avoiding Hardcoded Links

Although most Python functions are not available from Jinja2, render_template()
automatically includes Flask's url_for() function so paths can be generated based
on the Python function that needs to be called instead being hardcoded. This is most
useful for creating HTML links, as demonstrated by lines 8 and 9 of home.html:

<p>You can greet Alex
here.

Using url_for() is more future-proof than hardcoding the path like this:

<p>You can greet Alex here.

Hardcoded links are shorter but need to be updated every time we change the path
that is routed with a function. Using url_for() lets us update our paths without
having to change every template that links to it.

CPDD Computer Education Unit Version: Nov 2018
29

Web Applications
6 Enter the following program:

app.py

import flask
app = flask.Flask(__name__)

@app.route('/')
def home():

return flask.render_template('links.html')

@app.route('/greeting')
def hello():

return 'Hello, World!'

@app.route('/<int:year>')
def report(year):

return 'year is ' + str(year)

if __name__ == '__main__':
app.run()

Use the url_for() function to complete the following template so that each
link will display the respective message when clicked:

templates/links.html

<!doctype html>
<html>
<head><title>Links</title></head>
<body>

<p>Hello, World!</p>

<p>year is 2017</p>

</body>
</html>

The safe Filter

With p13_html_response_with_templates.py running, visit the URL that
previously allowed us to inject HTML into the greeting page:

http://127.0.0.1:5000/greet/enter%20password:%20<input><h1>Thanks/

This time, however, the injected code is displayed as plain text instead of being
treated as HTML. If you press Ctrl-U to view source, you would notice that the

CPDD Computer Education Unit Version: Nov 2018
30

Web Applications
less-than < and greater-than > signs have been escaped with the appropriate HTML
entities:

Jinja2 automatically performs this escaping for us so user input can be used in Jinja2
expressions freely without any safety concerns.

However, if we are sure that the result of a Jinja2 expression is safe and should be
treated as raw HTML, we can notify Jinja2 of this fact by using the safe filter. To
apply a filter to an expression, we follow the expression with a bar character | and
the name of the filter, as in the example below:

Template 3: templates/custom.html

1
2
3
4
5
6
7
8

<!DOCTYPE html>
<html>
<head><title>Custom HTML</title></head>
<body>
<h1>Custom HTML</h1>
{{ my_html|safe }}
</body>
</html>

Save this custom.html in the templates subfolder and run the following program
from the parent folder:

Program 14: p14_raw_html_with_safe_filter.py

1
2
3
4

import flask
from flask import render_template

app = flask.Flask(__name__)

CPDD Computer Education Unit Version: Nov 2018
31

Web Applications
5
6
7
8
9
10
11
12

@app.route('/')
def home():

return render_template('custom.html',
my_html='<h1>This is my HTML!</h1>')

if __name__ == '__main__':
app.run()

Visit http://127.0.0.1:5000/ and you should see that the string passed to the
template as my_html is rendered as raw HTML:

However, if we remove the safe filter from custom.html, my_html is rendered such
that the special characters < and > are escaped, as expected:

Technical Note

You must restart your program for any changes (such as removing the safe
filter) to take effect. If your program appears to stop reflecting changes that you
have made, restart the program, then hold down the Ctrl key while refreshing
so your browser bypasses its cache and performs a fresh HTTP request.

Alternatively, you may wish to run Flask in debug mode by replacing
app.run() with app.run(debug=True). This lets Flask reload itself whenever
it detects any file changes so manual restarts are no longer needed. However,
running Flask in debug mode has several incompatibilities with IDLE:

CPDD Computer Education Unit Version: Nov 2018
32

Web Applications

1. When using debug mode, the usual start-up messages that appear
when app.run() is called will not appear in IDLE's shell window.

2. Similarly, output from print() and error messages produced by your
program will not appear in IDLE's shell window.

3. Pressing Ctrl-C or restarting IDLE's shell will not stop the server
properly, so the next time you try to restart your program, you may
receive an error message informing you that port number 5000 is
already in use. As a workaround, save your work, then press Ctrl-Alt-Del
to start Task Manager and close all tasks with the name python.exe or
pythonw.exe. This will close IDLE and any other stray servers that may
still be running. After all copies of Python are closed, restart IDLE and try
running your program again.

These issues only occur when using IDLE. If you still wish to use debug mode,
it is highly recommended that you run your program from the Command Prompt
or PowerShell instead or use an alternative IDE.

The length Filter

Since the len() function is not available in Jinja2 expressions, you might wonder
how it is possible to output the length of a string or list from a template. One solution
would be perform the calculation in Python and pass the value over to the template
as a separate Jinja2 variable. However, for simple length checks Jinja2 provides a
length filter that gives the same result as len() but uses a different syntax:

Template 4: templates/length.html

1
2
3
4
5
6
7
8
9

<!DOCTYPE html>
<html>
<head><title>Length of Name</title></head>
<body>
<h1>Length of Name</h1>
Hello {{ name }},
your name is {{ name|length }} characters long!
</body>
</html>

Save the above length.html in the templates subfolder and run the following
program from the parent folder:

Program 15: p15_name_with_length_filter.py

CPDD Computer Education Unit Version: Nov 2018
33

Web Applications

1
2
3
4
5
6
7
8
9
10
11

import flask
from flask import render_template

app = flask.Flask(__name__)

@app.route('/<name>/')
def length_of_name(name):

return render_template('length.html', name=name)

if __name__ == '__main__':
app.run()

Visit different URLs such as http://127.0.0.1:5000/Elizabeth/ or
http://127.0.0.1:5000/Siti/ and examine how line 7 of the template uses the
length filter to determine the number of characters in name.

Jinja2 Statements

In a typical Flask application, the majority of data processing and computation should
be done using Python code. The outputs from this computation are then passed to
Jinja2 as numbers, strings, lists and other plain data objects. This data is then used
to fill in a template to produce the final HTML. Although it is possible to perform
some data processing and computation using Jinja2, performing complex logic in a
template is not recommended.

Nevertheless, sometimes it is useful to perform some simple logic in a template,
such as to selectively render parts of a template or to repeat a portion of the
template for every item in a list. To perform these tasks, Jinja2 supports control flow
in a template using Jinja2 statements made up of commands surrounded by {% and
%}. Unlike placeholders surrounded by double braces {{ and }} that are usually
replaced with output, the contents of {% and %} do not produce any output. For our
needs, we will cover two types of Jinja2 statements: if statements and for-in
statements.

if Statement

Similar to the if statement in Python, the Jinja2 if statement is used to selectively
include or exclude portions of the template. Excluded portions of a template are
simply not rendered. However, unlike Python, Jinja2 is not grouped by indentation,
so there needs to be an endif command to indicate where the if statement ends. In
addition, since the if, elif and else clauses are now demarcated by separate {%
and %} blocks, colons are no longer needed:

Template 5: templates/results.html

1
2

<!DOCTYPE html>
<html>

CPDD Computer Education Unit Version: Nov 2018
34

Web Applications
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

<head><title>Results</title></head>
<body>
<h1>Results</h1>

{% if greet %}
<p>Hello, {{ name }}.</p>

{% endif %}

{% if show_score %}
<p>Your score is {{ score }}%.</p>

{% elif score >= 50 %}
<p>You passed.</p>

{% else %}
<p>You failed.</p>

{% endif %}

</body>
</html>

Run the following program and visit http://127.0.0.1:5000/ to see the template
rendered for a score of 72:

Program 16: p16_results_using_if.py

1
2
3
4
5
6
7
8
9
10
11
12

import flask
from flask import render_template

app = flask.Flask(__name__)

@app.route('/')
def home():

return render_template('results.html', greet=True,
name='Alex', show_score=False, score=72)

if __name__ == '__main__':
app.run()

To explore further, adjust the greet, name, show_score and score keyword
arguments on lines 8 and 9, restart the server and visit http://127.0.0.1:5000/
again to see how the template is rendered differently. In each case, verify that the
template's behaviour matches up with what you would expect.

for-in Statement

Similar to the for-in statement in Python, the Jinja2 for-in statement is used to
repeat the rendering of a portion of the template for every item in a list, tuple, string

CPDD Computer Education Unit Version: Nov 2018
35

Web Applications
or dictionary. However, since Jinja2 is not grouped by indentation, like the if
statement there needs to be an endfor command to indicate where the for
statement ends.

A typical use of for-in is to output the contents of a collection in a table:

Template 6: templates/table.html

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

<!DOCTYPE html>
<html>
<head><title>Table of Results</title></head>
<body>
<h1>Table of Results</h1>

<table>
<tr><th>Subject Name</th><th>Score</th></tr>
{% for subject in results %}

<tr>
<td>{{ subject }}</td>
<td>{{ results[subject] }}</td>

</tr>
{% endfor %}
</table>

</body>
</html>

For this example, table.html expects a Jinja2 variable named results containing
a dictionary mapping subject names to scores. The following program creates a
hardcoded dictionary matching this format and passes it to the template for
rendering:

Program 17: p17_table_using_for.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14

import flask
from flask import render_template

app = flask.Flask(__name__)

@app.route('/')
def home():

results = {
'English': 75,
'Mother Tongue': 73,
'Maths': 76,
'Computing': 78

}
return render_template('table.html', results=results)

CPDD Computer Education Unit Version: Nov 2018
36

Web Applications
15
16
17

if __name__ == '__main__':
app.run()

Run the following program and visit http://127.0.0.1:5000/ to see how the
hardcoded data in the dictionary is rendered as a HTML table:

In a real web application, we would most likely retrieve the subject names and
scores from an SQLite database instead of hardcoding them.

Part 6: Static Files

Recall that requested paths are treated as strings for route matching by Flask and do
not usually refer to the location of real files or folders that are stored on the server.
This lets us return a dynamically-generated response using render_template()
instead of returning a static file.

However, most HTML documents do not exist in isolation. They typically request for
additional resources such as style sheets and images from additional URLs in order
to display properly. However, unlike the main content, these additional resources do
not change often, so instead of running a Python function to generate the response,
Flask lets us create a subfolder named static (in the same location as the
templates subfolder) to store these resources. Flask then sets up a view named
'static' that (by default) routes any path starting with /static/ to the contents of
this subfolder.

For example, create a subfolder named static In the folder where your Flask
programs are stored, then save the following file in this folder as styles.css:

Style Sheet 1: static/styles.css

1
2
3

body {
background: yellow;

}

CPDD Computer Education Unit Version: Nov 2018
37

Web Applications
4
5
6
7
8

h1 {
border-bottom: 1px solid red;
color: red;

}

Now, let's create a template that makes use of this style sheet. For simplicity, we can
hardcode the URL of the style sheet /static/styles.css. However, it is preferred
to use url_for() in case the path for static files changes in the future:

Template 7: templates/stylish.html

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

<!DOCTYPE html>
<html>
<head>

<title>Stylish Page</title>
<link

rel="stylesheet"
href="{{ url_for('static', filename='styles.css')

}}">
<!--

The above can also be written as:
<link rel="stylesheet" href="/static/styles.css">

-->
</head>
<body>
<h1>Stylish Page</h1>
<p>Look at how stylish this page is!</p>
</body>
</html>

Note how the path of the static file within the static subfolder is passed to
url_for() as a keyword argument named filename on line 7.

Finally, let us write a simple Python program to render this template:

Program 18: p18_static_style_sheet.py

1
2
3
4
5
6
7
8

import flask
from flask import render_template

app = flask.Flask(__name__)

@app.route('/')
def home():

return render_template('stylish.html')

CPDD Computer Education Unit Version: Nov 2018
38

Web Applications
9
10
11

if __name__ == '__main__':
app.run()

Visit http://127.0.0.1:5000/ with this program running and you should see the
styled page. If you use the View Source feature by pressing Ctrl-U, you can also
verify that the style sheet URL placeholder is replaced with a path starting with
/static/:

Part 7: Processing Form Data

So far, we have been able to get input from the user by extracting variables from
request URLs. However, it is more common for users to provide input to a web
application by filling in a HTML form and submitting it. When a HTML form is
submitted, the browser collects all the input as key-value pairs and encodes it into a
single string. This string is then sent to the server using a HTTP request. Depending
on how the HTML form is configured, either a GET request or POST request is
made.

GET Requests

The default behaviour for HTML forms is to submit a GET request. When this
method is used, the encoded form data is visible in the query portion of the request
URL. For instance, the URL http://example.com/hello?name=bala&age=18
contains a query with two key-value pairs: one for the key 'name' and another for
'age'.

Parsing key-value pairs encoded in query strings can be tedious and error-prone.
Thankfully, if a query string is present, Flask does this parsing for us and lets us
access it as a dictionary from a request object that can be imported from the flask
module.

To illustrate this, create the following two templates in your templates subfolder.
The first template is used to display the HTML form:

CPDD Computer Education Unit Version: Nov 2018
39

Web Applications

Template 8: templates/form_with_get.html

1
2
3
4
5
6
7
8
9
10

<!DOCTYPE html>
<html>
<head><title>GET Form</title></head>
<body>
<form action="{{ url_for('process_with_get') }}">

<p>Input s: <input name="s"></p>
<p><input type="submit"></p>

</form>
</body>
</html>

Notice that on line 5 we use url_for() with a function name of
'process_with_get' to generate the path that the form data will be submitted to.
We will write the code for process_with_get() later.

The second template is used to display the results of processing. In this case, let us
display the number of vowels and number of words in the submitted name. Save the
following file in the same folder as analysis_results.html:

Template 9: templates/analysis_results.html

1
2
3
4
5
6
7
8
9
10

<!DOCTYPE html>
<html>
<head><title>String Analysis</title></head>
<body>
<p>You entered s: {{ s }}</p>
<p>This string has

{{ num_vowels }} vowels(s) and
{{ num_words }} word(s).

</body>
</html>

Next, let us write a Flask application with two routes: the root / route simply renders
the form while the /process/ route is associated with a Python function named
process_with_get() that analyses s and renders the result:

Program 19: p19_analysis_with_get.py

1
2
3
4
5
6

import flask
from flask import render_template, request

VOWELS = ['a', 'e', 'i', 'o', 'u']

app = flask.Flask(__name__)

CPDD Computer Education Unit Version: Nov 2018
40

Web Applications
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

@app.route('/')
def form():

return render_template('form_with_get.html')

@app.route('/process/')
def process_with_get():

if 's' in request.args:
s = request.args['s']
lower_s = s.lower()
num_vowels = 0
for vowel in VOWELS:

num_vowels += lower_s.count(vowel)
num_words = len(s.split())
return render_template('analysis_results.html',

s=s, num_vowels=num_vowels, num_words=num_words)
return 'No form data found!'

if __name__ == '__main__':
app.run()

Notice that the request object is imported from the flask module on line 2 and that
the submitted value of s is accessed via the request.args dictionary on line 15.
Visit http://127.0.0.1:5000/ and fill in the form. When you submit the form,
notice that the value of s you entered is encoded in the resulting URL.

Also note that it is possible to manually visit http://127.0.0.1:5000/process/
without filling in the form. If you do so, the request.args dictionary will not include a
value for 's' and the error message on line 23 will be returned instead.

POST Requests

Submitting form data using a GET request has several disadvantages:

1. Firstly, the submitted form data is recorded in the resulting URL, which lets
anyone view your browser history to obtain the form data that was sent.

CPDD Computer Education Unit Version: Nov 2018
41

Web Applications

2. Secondly, GET requests are not supposed to make changes to the server's
data. If we use data submitted with a GET request to add, delete or update
data from a database, we are not following the HTTP standard.

3. Finally, some browsers and server software limit the length of URLs, so there
is a risk that overly long form data submitted using GET may get truncated.

To overcome these disadvantages, we can configure HTML forms to submit the data
using POST requests instead. We do this by setting the method attribute of the
<form> tag to "post" or "POST". Using a different HTTP method also lets us
distinguish between requests from users clicking a link or entering the URL in an
address bar versus requests from users submitting a form. We can take advantage
of this to use the same URL for both displaying the form as well as processing the
form.

To illustrate this, create the following template in your templates subfolder:

Template 10: templates/form_with_post.html

1
2
3
4
5
6
7
8
9
10

<!DOCTYPE html>
<html>
<head><title>POST Form</title></head>
<body>
<form method="post">

<p>Input s: <input name="s"></p>
<p><input type="submit"></p>

</form>
</body>
</html>

Notice that besides adding the method attribute on line 5, we have also removed the
action attribute so the form is submitted to the same URL used to generate the
form.

Next, let us adapt 19_analysis_with_get.py to combine both routes and
distinguish between the two situations by looking at the HTTP method used. The
HTTP method can be easily determined via the request.method string:

Program 20: p20_analysis_with_post.py

1
2
3
4
5
6
7

import flask
from flask import render_template, request

VOWELS = ['a', 'e', 'i', 'o', 'u']

app = flask.Flask(__name__)

CPDD Computer Education Unit Version: Nov 2018
42

Web Applications
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

@app.route('/', methods=['GET', 'POST'])
def index():

if request.method == 'GET':
return render_template('form_with_post.html')

if 's' in request.form:
s = request.form['s']
lower_s = s.lower()
num_vowels = 0
for vowel in VOWELS:

num_vowels += lower_s.count(vowel)
num_words = len(s.split())
return render_template('analysis_results.html',

s=s, num_vowels=num_vowels, num_words=num_words)
return 'No form data found!'

if __name__ == '__main__':
app.run()

Here, index() checks if the request method is 'GET', and if so, simply renders the
form and exits. Otherwise, the request method is assumed to be 'POST' and the
submitted form data is processed instead.

Notice that unlike GET requests where submitted form data is available from the
request.args dictionary, for POST the submitted form data is placed in a separate
request.form dictionary instead. For instance, the submitted value of s is accessed
via the request.form dictionary on line 13.

Also note that the route decorator on line 8 must explicitly include 'POST' in its list of
allowed methods as Flask routes are only accessible via 'GET' by default.

Now, with the program running, visit http://127.0.0.1:5000/ and fill in the form.
When you submit the form, notice that the value of s you entered in NOT visible in
the resulting URL and that the URL displayed in the address bar remains the same.

Notice on line 12 that we still check if the request.form dictionary has a value for
's' before proceeding. Even though it is relatively hard for an average user to send
phony POST requests, it is not technically difficult and our program must be
prepared to handle POST requests with incomplete or invalid form data. In this case,
if there is no value for 's' in request.form, we return an error message on line 21
instead.

7 Enter the following and save it as a template named form.html:

templates/form.html

<!doctype html>
<html>
<head><title>Greeting Form</title></head>

CPDD Computer Education Unit Version: Nov 2018
43

Web Applications
<body>

<form method="POST">
<input type="text" name="name">
<input type="text" name="address">
<input type="submit">

</form>
</body>
</html>

Complete the following program and template so visiting
http://127.0.0.1:5000/ will render form.html and submitting the form will
display “Hello name, your address is: address”, where name is the content of
the first text field and address is the content of the second text field:

templates/results.html

<!doctype html>
<html>
<head><title>Greeting</title></head>
<body>

Hello , your address is:
</body>
</html>

app.py

import flask
from flask import
app = flask.Flask(__name__)

Use the space below

if __name__ == '__main__':
app.run()

Part 8: Handling File and Image Uploads

Recall that an <input> tag can have its type attribute set to "file". This allows the
user to upload files for submission with the form. However, for file uploads to work
properly, the enclosing <form> must also be configured to use POST and include an

CPDD Computer Education Unit Version: Nov 2018
44

Web Applications
additional enctype attribute that is set to "multipart/form-data". This attribute means
that one or more sets of data are combined in a single body.

For example, the following template presents a form for uploading photos as well as
a link for seeing all the photos that have been uploaded:

Template 11: templates/form_with_file_upload.html

1
2
3
4
5
6
7
8
9
10
11

<!DOCTYPE html>
<html>
<head><title>Photo Upload</title></head>
<body>
<form method="post" enctype="multipart/form-data">

<p>Photo: <input name="photo" type="file"></p>
<p><input type="submit"></p>

</form>
<p>View photos</p>
</body>
</html>

The template for viewing the uploaded photos is provided below:

Template 12: templates/view_file_uploads.html

1
2
3
4
5
6
7
8
9
10
11

<!DOCTYPE html>
<html>
<head><title>View Photos</title></head>
<body>
{% for photo in photos %}

<img src="{{ url_for('get_file', filename=photo) }}"
alt="{{ photo }}">

{% endfor %}
<p>Home</p>
</body>
</html>

For the main Flask application, we create three routes: one for uploading photos,
one for seeing all the uploaded photos and one for retrieving the image data of an
uploaded photo given its filename. We also initialize and use a simple SQLite
database to keep track of the photos uploaded:

Program 21: p21_file_uploads.py

1
2
3
4

import flask, os, sqlite3
from flask import render_template, request
from flask import send_from_directory
from werkzeug.utils import secure_filename

CPDD Computer Education Unit Version: Nov 2018
45

Web Applications
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

if not os.path.isfile('db.sqlite3'):
db = sqlite3.connect('db.sqlite3')
db.execute('CREATE TABLE photos(photo TEXT)')
db.commit()
db.close()

app = flask.Flask(__name__)

@app.route('/', methods=['GET', 'POST'])
def home():

if request.method == 'POST' and \
request.files and 'photo' in request.files:
Save file
photo = request.files['photo']
filename = secure_filename(photo.filename)
path = os.path.join('uploads', filename)
photo.save(path)
Add filename to database
db = sqlite3.connect('db.sqlite3')
db.execute('INSERT INTO photos(photo) VALUES(?)',

(filename,))
db.commit()
db.close()

return render_template('form_with_file_upload.html')

@app.route('/view')
def view():

db = sqlite3.connect('db.sqlite3')
cur = db.execute('SELECT photo FROM photos')
photos = []
for row in cur:

photos.append(row[0])
db.close()
return render_template('view_file_uploads.html',

photos=photos)

@app.route('/photos/<filename>')
def get_file(filename):

return send_from_directory('uploads', filename)

if __name__ == '__main__':
app.run()

Before running the program, create an empty uploads subfolder to store the
uploaded photos. Next, run the program and visit http://127.0.0.1:5000/ to
upload some photos (i.e., GIF, JPG or PNG files). When you are done, click on the
"View" link to see the uploaded photos.

CPDD Computer Education Unit Version: Nov 2018
46

Web Applications

Go further! Try to upload non-photo files such as PDF files. The file will still be
uploaded but will not be displayed properly. Can you edit Program 21 to only allow
files with extensions GIF, JPG or PNG to be uploaded?

Note that unlike normal form data, submitted files are not accessed from
request.form but from a separate request.files dictionary (e.g., line 19). Each
value in this dictionary is a file object with a filename attribute as well as a save()
method that accepts a file path and writes the submitted file onto the server's file
system using the provided file path.

In general, we should be careful whenever we let users specify filenames for reading
or writing files on the server's file system as file paths can use special folder names
such as .. to access parent folders that contain source code or your server's
configuration files. To prevent this from happening, on line 20 we pass the filename
through the secure_filename() function provided in the werkzeug.utils module
first. This function returns a modified filename with all special characters replaced so
it can be safely treated like a normal filename. We then use this filename on line 21
to form a file path that is guaranteed to be in our uploads subfolder.

To actually view uploaded photos, we need two routes: one for generating the HTML
document that will display all the photos on a single page and another for accessing
each photo's file data. For the second route, we use send_from_directory() on
line 44 to avoid the same security issues that come from using paths or filenames
provided by users. To use send_from_directory(), we call it with the name of a
subfolder that the requested file must be stored in as well as the file's filename. We
then return the result of this call directly.

As an alternative to configuring a new route to access each uploaded photo, we can
instead save our uploads in the static subfolder and make use of the existing
'static' route that Flask provides by default. However, this requires us to be
careful not to let users overwrite files that they are not supposed to.

CPDD Computer Education Unit Version: Nov 2018
47

Web Applications
Below is a summary of how request.args, request.form and request.files are
used to access the different kinds of data submitted by the user:

Attribute request.args request.form request.files
Contents Dictionary of field

names and their
associated values
from query portion
of URL

Dictionary of field
names and their
associated values

Dictionary of file
upload names and
their associated
FileStorage
objects

HTTP Method Usually GET, but
also works with
POST if URL has
query portion

POST only POST only

Typical Use Reading form data
submitted using
GET

Reading form data
submitted using
POST

Saving files
submitted using
POST

Other Form must specify
enctype=
"multipart/form-
data"

Part 9: Conclusion

In this practical task, you have learned how to use Flask to route HTTP requests,
send HTTP responses, use templates and process form data. Combined with the
ability to read and write from SQLite databases, you now have the building blocks to
create all manners of creative web applications.

As a conclusion, look back at p01_server_without_flask.py from the beginning
of this practical task. The following program demonstrates how the same application
that displays random colours and text can be written using the Flask framework that
you are now familiar with:

Program 22: p22_server_with_flask.py

1
2
3
4
5
6
7
8
9
10

import random
import flask

app = flask.Flask(__name__)

List of possible colours.
COLOURS = [

'red', 'orange', 'blue', 'purple',
'#C0C000', # dark yellow
'#00C000' # dark green

CPDD Computer Education Unit Version: Nov 2018
48

Web Applications
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

]

List of possible messages.
MESSAGES = ['Hello, World!', 'Computing is Fun',
'Interesting']

@app.route('/css')
def css():

border_colour = random.choice(COLOURS)
text_colour = random.choice(COLOURS)
return (

flask.render_template('example.css',
border_colour=border_colour,
text_colour=text_colour),

{ 'Content-Type': 'text/css' }
)

@app.route('/')
def html():

msg = random.choice(MESSAGES)
return flask.render_template('example.html', msg=msg)

if __name__ == '__main__':
app.run()

This program also requires the following templates:

Template 13: templates/example.html

1
2
3
4
5
6
7
8
9
10
11
12
13

<!DOCTYPE html>
<html>

<head>
<title>{{ msg }}</title>
<link rel="stylesheet" href="{{ url_for('css') }}">

</head>

<body>
<p>{{ msg }}</p>

</body>

</html>

Template 14: templates/example.css

1 p {

CPDD Computer Education Unit Version: Nov 2018
49

Web Applications
2
3
4
5
6

border: 5px solid {{ border_colour }};
color: {{ text_colour }};
font-size: 72px;
padding: 20px;

}

Compare p01_server_without_flask.py to p22_server_with_flask.py. Which
do you think is easier to write and maintain? Why do you think so?

While there are many other alternative approaches to developing web applications,
we hope that learning Flask provides you with a firm foundation for the underlying
principles and makes further exploration of the topic easier in the future.

CPDD Computer Education Unit Version: Nov 2018
50

Web Applications
flask Module Summary

Name Description
Flask(name) Creates a Flask application object
redirect(path) Redirects user to the given path when used as

a return value from a decorated function
render_template(filename,
var=value)

Renders Jinja2 template with the given
filename using the given variable values and
returns the rendered response as a str

request Accesses current Request object
send_from_directory(folder,
filename)

Sends file from given directory (first argument)
with given filename (second argument) when
used as a return value from a decorated
function

url_for(name, var=value) Returns the path that is mapped to the given
function name and given variable values

werkzeug Module Summary
Name Description

secure_filename(filename) Replaces all characters that have special
meanings (e.g., path separators) in the given
str with underscores

Flask Class Summary
Name Description

route(path,
methods=["GET"])

Maps the given path to the decorated function but limits
access to given list of HTTP methods; the HTTP methods are
"GET" and "POST"

run() Runs the Flask application with debugging disabled
run(debug=True) Runs the Flask application with debugging enabled

Request Class Summary
Name Description

args Returns a dictionary of field names and their associated values from
query portion of URL

files Returns a dictionary of file upload names and their associated
FileStorage objects

form Returns a dictionary of field names and their associated values
method Returns either "GET" or "POST"

FileStorage Class Summary
Name Description

filename Returns the name of the uploaded file
save(path) Saves the uploaded file to the given path

CPDD Computer Education Unit Version: Nov 2018
51

