School of Science and Technology, Singapore 2023 Secondary 3 Chemistry Class Test 2 Marking Scheme

Section A

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10
D	В	В	С	А	D	В	А	В	А

Section B

Question	Accepted Answers	Marks
1a	magnesium	1
b	silicon	1
С	sulfur/chlorine/ phosphorus	1
d	phosphorus	1
е	chlorine	1

-					T
		6			
	0/ 1	C	F	C/	
	% by mass	8.7	13.8	77.5	
	Ar	12	19	35.5	1
2a	no. of moles (calculation shown)	8.7/12 = 0.725	13.8/19 = 0.72631	77.5/35.5 = 2.18309	
	ratio (calculation shown)	0.725/0.725 =1	0.72631/0.725 =1.001 ≈1	2.18309/0.725 = 3.01 ≈3	1
	Empirical Formula: (1			
2b(i)	sharing of electrons	1			
20(1)	sharing of electrons	1			
2b(ii)	$CCI_4 + 2HF \rightarrow CF_2C_4$	1			
	no. of mol of HF = 10/20 = 0.5 mol	1			
0h (''')	no. of mol of CC <i>l</i> ₄ = 36/24 =1.5 mol	1			
2b(iii)	Based on molar ratio	1			
	mass of of CF_2C_2 = 0.5/2 x [12+(19)(2) = 0.25 x 121 = 30.25 = 30.3 g (to 3 sf)	1(answer with units)			

	 Fill a√ <u>burette with (dilute) sulfuric acid</u>. Note the initial burette reading, V₁ cm³. 	7-8 √ : 4m		
		5-6 ✓ : 3m		
	2. \checkmark Pipette (25.0 cm ³) of potassium hydroxide solution into a conical flask.	3-4√ : 2m		
	3. Add √a few drops of suitable named indicator (e.g. methyl orange) to the	2√:1m		
	solution in conical flask.	1√:0m		
3a	4. Add the $\sqrt{\text{acid from the burette (slowly)}}$, $\sqrt{\text{swirling the conical flask,}}$ until			
Ja	the $\sqrt{\text{indicator changes colour}}$. (e.g. red to orange) Record the final			
	burette reading, V_2 cm ³ .			
	5. Determine the $\sqrt{\text{volume of (dilute) sulfuric acid required for complete}}$			
	neutralisation of potassium hydroxide solution.			
	6. $\sqrt{\text{Repeat the titration without adding the indicator.}}$ Add V ₂ – V ₁ cm ³ of the			
	acid into 25.0 cm ³ of potassium hydroxide solution into a conical flask.			
	carbon dioxide will be formed from this reaction, as an acidic oxide/, it will			
	lower(affect) the pH of the resultant solution/, requiring greater volume of			
3b	potassium carbonate to neutralise sulfuric acid.	1		
	C is a <u>giant covalent</u> molecular structure as it has very high melting and boiling points.	1		
	points.			
	F comprises of simple covalent/discrete molecule/structure as it has low melting			
4a	and boiling points.			
	C and F are <u>unable to conduct electricity in its solid and liquid states</u> , as there are			
	no mobile charged carriers (ions/electrons)in its structure.			
		1		
	Nitric acid is a <u>strong acid</u> , thus it (<u>completely</u>) <u>ionises/dissociates</u> to form	1		
b	0.01 mol / dm ³ of hydrogen ions.			
		1		

	Nitrous acid is a <u>weak acid</u> , it (<u>partially</u>) ionises/dissociates to form less hydrogen ions of concentration 4.50 x 10 ⁻⁶ 0.0004 mol / dm ³	
	reactivity of metal : A is unreactive while B is a reactive metal. No gas was produced when A reacted with both acids.	
c(i)	basicity of acid: twice the volume of gas was produced when B reacted with sulfuric acid compared to nitric acid, though same concentration and volume of acid were used.	1[factor] 1[explanation]
c(ii)	<u>10.0 cm³</u> ; <u>ethanoic acid and nitric acid are monobasic acids/</u> , thus the <u>stoichiometric ratio of the acids and gas produced will be the same</u> , resulting in the same volume of gas produced.	1
(d)	Lesser volume of gas produced when E reacts with sulfuric acid compared to D; E forms <u>an insoluble substance</u> which <u>prevents the reaction to go into completion</u> . However, the <u>product formed from the reaction between D and sulfuric acid is</u> <u>soluble</u> , allowing the <u>reaction to go into completion</u> .	1 1