95

National Junior College 2016 – 2017 H2 Further Mathematics

NATIONAL Topic F7: Further Complex Numbers (Assignment 1 Solutions)

Qn No.	Solution	Marking Scheme
2(a) (i)	$\left z+w\right = \left z+\left(i\sqrt{3}\right)z\right $	M1 : Use of $ z_1 z_2 = z_1 z_2 $
	$=\left \left(1+i\sqrt{3}\right)z\right $	
	$= \left 1 + i\sqrt{3}\right \left z\right = 2\lambda$	$AI: 2\lambda$
(ii)	$\operatorname{arg}(z + u) = \operatorname{arg}((1 + i\sqrt{2})z)$	
(11)	$\arg(z+w) = \arg\left(\left(1+i\sqrt{2}\right) + \arg\left(-1\right)$	M1 : Use of $\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)$
	$= \arg(1 + i\sqrt{3}) + \arg(z)$ π	π
	$=\frac{\pi}{3}+\theta$	A1: $\frac{\pi}{3} + \theta$
2 (b) (i)	$ z-1+i\sqrt{3} = \sqrt{3}$ is a circle with centre $(1,\sqrt{3})$ and radius	B1: correct sketch of circle
	$\sqrt{3}$ units.	(or the line segment must appear to be confined in the
	$\arg(2z + 14\sqrt{3}) = \frac{\pi}{3}$	circle)
	$\Rightarrow \arg(2) + \arg(z + i2\sqrt{3}) = \frac{\pi}{3}$	B1: correct sketch of half line (hollow circle is not required
	$\Rightarrow \arg(z+i2\sqrt{3}) = \frac{\pi}{3}$	at end point)
	$\arg(z+i2\sqrt{3}) = \frac{\pi}{3}$ is a half-line with starting point at	B1: Required locus is a diameter
	$(0, -2\sqrt{3})$ that makes angle of $\frac{\pi}{2}$ with the positive real axis.	of the circle (must be clearly and correctly labeled)
	Im j	
	O Re	
	$\sqrt{3}$	
	$\begin{pmatrix} 1, -\sqrt{3} \end{pmatrix}$	
	Locus of z	
	π	
	$A\left(0,-2\sqrt{3}\right) \Phi^{3} = = = = = = = = = = = = = = = = = = =$	
	1. the half line passes through the centre of circle.	
	2. The real axis is a tangent to the circle.	
2b		

Qn No.	Solution	Marking Scheme
3 (i), (ii)	$Im \qquad Im \qquad Locus for \\ Iocus for (ii) \qquad C \qquad (i) \qquad A \qquad $	 (i) B1: Circle centered at <i>A</i> with radius 5 (must pass through origin) B1: Correct shaded region (ii) B1: Circle centered at <i>B</i> with radius 5 (must pass through origin) B1: Correct shaded region and relative position of <i>A</i>
3 (iii)	A 90° anti-clockwise rotation about the origin	B1
3 (iv)	Since $ (a + ia) - a = (a + ia) - ia = 5$, thus $z = a + ia$ satisfies the equations $ z - a = 5$ and $ z - ia = 5$. Thus C lies on the loci of $ z - a = 5$ and $ z - ia = 5$.	B1: Or any other appropriate explanations
3(v)	Since triangle <i>OBC</i> is an isosceles right angled triangle, Required area = $2\left(\frac{1}{4}\pi(5)^2 - \frac{1}{2}(5)^2\right)$ = $\frac{25}{2}(\pi - 2)$	M1 A1
3 (vi)	Let <i>D</i> represents $ia - a$ on the Argand diagram. By circle properties, $\angle ODC = \frac{\pi}{4}$. Since $ia - a = -7 - i$, thus max $\arg(z - ia + a) = \frac{\pi}{4} + \tan^{-1}\left(\frac{1}{7}\right)$. OR Since <i>DC</i> is parallel to <i>OA</i> , max $\arg(z - ia + a) = \arg(a) = \tan^{-1}\left(\frac{4}{7}\right)$	M1: Identify point <i>D</i> correctly

$$\begin{array}{|c|c|c|c|} \hline \mathbf{M} & \text{Method 1:} \\ \hline \mathbf{(iii)} & z = \left(\sqrt{18} - 2\right) \left[\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right) \right] \\ & = \left(3\sqrt{2} - 2\right) \left[\frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}} \right] \\ & = 3 - \frac{2}{\sqrt{2}} - i\frac{(3\sqrt{2} - 2)}{\sqrt{2}} \\ & = 3 - \frac{2}{\sqrt{2}} - 3i + i\frac{2}{\sqrt{2}} \\ & = \left(3 - \frac{2}{\sqrt{2}}\right) + \left(-3 + \frac{2}{\sqrt{2}}\right)i \\ & = \left(3 - \sqrt{2}\right) + \left(-3 + \sqrt{2}\right)i \\ \end{array} \right) \\ & \text{Method 2:} \\ & x^2 + x^2 = \left(\sqrt{18} - 2\right)^2 \\ & x^2 = \frac{\left(\sqrt{18} - 2\right)^2}{2} \\ & x = \sqrt{\frac{1}{\sqrt{2}} - 2} \\ & x = \sqrt{\frac{1}{\sqrt{2$$