1	Solution [4] MOD	
	Let $\frac{2}{(2r-1)(2r+1)} = \frac{A}{(2r-1)} + \frac{B}{(2r+1)}$	This part is well-done by almost every student.
	$A = \frac{2}{(2r+1)} \bigg _{x=\frac{1}{2}} = 1$	
	$B = \frac{2}{(2r-1)} \bigg _{x=-\frac{1}{2}} = -1$	
	$\frac{2}{(2r-1)(2r+1)} = \frac{1}{(2r-1)} - \frac{1}{(2r+1)}$	
	$\sum_{r=1}^{n} \left[\frac{1}{(2r-1)(2r+1)} \right] = \frac{1}{2} \sum_{r=1}^{n} \left[\frac{1}{2r-1} - \frac{1}{2r+1} \right]$	The common mistake is missing out the $\frac{1}{2}$ but most
	$=\frac{1}{2}\begin{cases}\frac{1}{1}-\frac{1}{3}\\+\frac{1}{3}-\frac{1}{5}\\+\frac{1}{2n-3}-\frac{1}{2n-1}\\+\frac{1}{2n-1}-\frac{1}{2n+1}\end{cases}$	students recognize it is MOD.
	$=\frac{1}{2}\left(1-\frac{1}{2n+1}\right)$	

2022 JC1 H2 MA Common Test Markers Comments

$$\begin{aligned} \sum_{r=4}^{n} \left[\frac{1}{(2r-3)(2r-1)} \right] \\ &= \sum_{k+1=4}^{k+1=n} \left[\frac{1}{(2(k+1)-3)(2(k+1)-1)} \right] (let \ r = k+1) \\ &= \sum_{k=1}^{n-1} \left[\frac{1}{(2k-1)(2k+1)} \right] \\ &= \sum_{k=1}^{n-1} \left[\frac{1}{(2k-1)(2k+1)} \right] - \sum_{k=1}^{2} \left[\frac{1}{(2k-1)(2k+1)} \right] \\ &= \frac{1}{2} \left(1 - \frac{1}{2(n-1)+1} \right) - \frac{1}{2} \left(1 - \frac{1}{2(2)+1} \right) \\ &= \frac{1}{2} \left(1 - \frac{1}{2(n-1)+1} - 1 + \frac{1}{2(2)+1} \right) \\ &= \frac{1}{2} \left(\frac{1}{5} - \frac{1}{2n-1} \right) \end{aligned}$$

2	Solution [4] SLEs	
	Let b , s and f be the price per cup of butter, sugar and flour	Very well-done by almost
	respectively.	all students
	200b + 50s + 200f = 129	
	40b + 40s + 40f = 32.4	
	100b + 50s + 300f = 88	
	From GC,	
	b = 0.5, s = 0.22, f = 0.09	
	Therefore, the price of a cup of butter, sugar, and flour is	
	\$0.50, \$0.22, and \$0.09 respectively.	
	Hence, the cost to produce the pastries is \$81.25	

3	Solution [5] Inequality	
(a)	Solution [5] inequality $ \sqrt{\frac{x+2}{x}} = \left(1 + \frac{2}{x}\right)^{\frac{1}{2}} $ $ = \left(1 + \frac{1}{2}\left(\frac{2}{x}\right) + \frac{\frac{1}{2}\left(\frac{1}{2} - 1\right)}{2!}\left(\frac{2}{x}\right)^{2} + \frac{\frac{1}{2}\left(\frac{1}{2} - 1\right)\left(\frac{1}{2} - 2\right)}{3!}\left(\frac{2}{x}\right)^{3} + \dots\right)(*) $ $ = 1 + \frac{1}{x} - \frac{1}{2x^{2}} + \frac{1}{2x^{3}} + \dots $ Expansion is valid for $\left \frac{2}{x}\right < 1 \Rightarrow \frac{2}{ x } < 1 \Rightarrow x > 2$ x > 2 or x < -2 Since $ -6 = 6 > 2$, $x = -6$ is valid for getting an estimate for $\sqrt{6}$. $\sqrt{\frac{x+2}{x}} \approx 1 + \frac{1}{x} - \frac{1}{2x^{2}} + \frac{1}{2x^{3}}$ Let $x = -6$ $\sqrt{\frac{-4}{-6}} \approx 1 + \frac{1}{(-6)} - \frac{1}{2(-6)^{2}} + \frac{1}{2(-6)^{3}}$ $\frac{2}{\sqrt{6}} \approx \frac{864}{353}$	Most students are able to come out with the series; however some did not read the question clearly and attempt to expand in increasing order instead. Not many students can write down the range of values of x correctly and subsequently give a reason why -6 is a good estimate. There is another approximate value of $\sqrt{6} \approx \frac{353}{144}$. $\sqrt{\frac{2}{3}} \approx \frac{353}{432}$ $\sqrt{\frac{2}{3}} \cdot \frac{3}{3} \approx \frac{353}{432}$ $\sqrt{\frac{6}{3}} \approx \frac{353}{432}$ $\sqrt{6} \approx \frac{353}{144}$

4	Solution [5] Summation	
4 (a)	Solution [5] Summation $u(r) - u(r-1) = 2^{-r} + 4r - 2$ $\sum_{r=1}^{N} u(r) - u(r-1) = \sum_{r=1}^{N} 2^{-r} + 4r - 2$ $\begin{cases} u(1) - u(0) \\ + u(2) - u(1) \\ \cdots \\ + u(N) - u(N-1) \end{cases} = \sum_{r=1}^{N} 2^{-r} + 4\sum_{r=1}^{N} r - \sum_{r=1}^{N} 2$ $u(N) - u(0) = \frac{\frac{1}{2} \left(1 - \frac{1}{2^{N}} \right)}{1 - \frac{1}{2}} + 4 \left(\frac{1}{2} N(N+1) \right) - 2N$ $u(N) - 5 = 1 - \frac{1}{2^{N}} + 2N(N+1) - 2N$ $u(N) = 6 - \frac{1}{2^{N}} + 2N^{2}$ Therefore $u(r) = 6 - \frac{1}{2^{r}} + 2r^{2}$	Question was challenging for most students. For those who attempted, many used the original form $u(r) = u(r-1)2^{-r} + 4r - 2$ and kept expanding the RHS with no avail. For some, MOD was used for u(r) - u(r-1) but did not apply the summation to $2^{-r} + 4r - 2$. To apply MOD, students need to recognize that they need the form $\sum u(r) - u(r-1)$. Thus, the first step is to move u(r-1) to the LHS. Then take $\sum_{r=1}^{N}$ on both sides. Then realise that the RHS can be split into sum of a
		GP, AP and constant respectively.

5	Solution [7] Inequality	
(a)	$\frac{x^3 + 4x^2 + 5x - 2}{2} \ge -1$	Generally ok except for some students missing out
	2-x $x^{3}+4x^{2}+5x-2$	on the answer $x = -2$.
	$\frac{x+1x+3x-2}{2-x}+1 \ge 0$	Also, there were mistakes
	$\frac{x^3 + 4x^2 + 5x - 2 + 2 - x}{2} > 0$	with the combining of
	2-x	as in the operation with
	$\frac{x^3 + 4x^2 + 4x}{2 - x} \ge 0$	inequality signs.
	$\frac{x\left(x^2+4x+4\right)}{2} \ge 0$	
	2-x	
	$\frac{x(x+2)}{2-x} \ge 0$	
	-2 0 2	
	$0 \le x < 2$ but $x = -2$ also satisfy the inequality	
	Therefore	
	$0 \le x < 2 \text{ or } x = -2$	
	Alternatively	
	$\frac{x(x+2)^2}{2} \ge 0$	
	2-x Since $(x+2)^2 > 0$, with $x = 2$ satisfy the inequality	
	Since $(x+2) \ge 0$, with $x = -2$ satisfy the inequality	
	$\frac{1}{2-x} > 0$	
	<u> </u>	
	0 2	
	Therefore	
	$0 \le x < 2 \text{ or } x = -2$	

(b)	$\frac{x^3 - 4x^2 + 5x + 2}{2 + x} \le 1$	Most students were able to identify the replacement for
	Replace x with $-y$ $\frac{-y^3 - 4y^2 - 5y + 2}{-3y^2 - 5y + 2} < 1$	x and proceed to solve the inequality for this part. Some missed the answer
	$\frac{2 - y}{\frac{y^3 + 4y^2 + 5y - 2}{2}} \ge -1$	x = 2 due to the first part.
	2-y Using earlier result	
	$0 \le y < 2 \text{ or } y = -2$. Thus $0 \le -x < 2 \text{ or } -x = -2$	
	$-2 < x \le 0$ or $x = 2$	

6	Solution [7] Implicit Differentiation	
(a)	$x^3 + y^3 = 4xy$	Generally, well done.
	$3x^2 + 3y^2 \frac{\mathrm{d}y}{\mathrm{d}x} = 4y + 4x \frac{\mathrm{d}y}{\mathrm{d}x}$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} \left[3y^2 - 4x \right] = 4y - 3x^2$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4y - 3x^2}{3y^2 - 4x}$	
(b)	$\frac{\mathrm{d}y}{\mathrm{d}r} \to \infty$	
	$\text{Let } 3y^2 - 4x = 0$	
	$x = \frac{3}{4} y^2$	
	$\left(\frac{3}{4}y^2\right)^3 + y^3 = 4y\left(\frac{3}{4}y^2\right)$	
	$\left(\frac{3}{4}\right)^3 y^6 + y^3 = 3y^3$	
	$y^{3}\left(\frac{27}{64}y^{3}-2\right)=0 (*)$	Many candidates miss out the solution $y = 0$ from equation (*)
	$y = 0$ or $y = \left(\frac{128}{27}\right)^{\frac{1}{3}} = \frac{(128)^{\frac{1}{3}}}{3}$ or 1.6798947	The question did not ask for exact values of the coordinates, candidates
	$x = 0$ or $x = \frac{1}{12} (128)^{\frac{2}{3}}$ or 2.1165347	could have used GC function to evaluate the
	The coordinates where the tangent to curve is parallel to	roots to (*).
	the y-axis	
	are (0,0) and $\left[\left(\frac{128^{\frac{1}{3}}}{3}, \frac{128^{\frac{2}{3}}}{12} \right) or (1.68, 2.12) \right]$	

7	Solution [10] Tangent normal Parametric Equation	
(i)	$x = 2t+1, y = \frac{4}{t}$ where $t > -1$ and $t \neq 0$. When $t \to 0, x \to 1$ and $y \to \infty$, therefore the curve has a vertical asymptote at $x = 1$. When $t \to \infty, x \to \infty$ and $y \to 0$, therefore the curve has a horizontal asymptote at $y = 0$.	To show that a line is an asymptote, we need to describe the behaviour of <u>both</u> x and y variables near the line (eg $x \rightarrow 1$ and $y \rightarrow \infty$). In this question, since t is the parameter where both x and y are dependent on, we <u>must</u> start with the behaviour of t first ($t \rightarrow 0$ and $t \rightarrow \infty$), then talk about the behaviour of x and y.
	Alternative Method $x = 2t+1, y = \frac{4}{t} \text{ where } t > -1 \text{ and } t \neq 0.$ Sub $t = \frac{x-1}{2} \text{ into } y = \frac{4}{t},$ $y = 4 \div \frac{x-1}{2}$ $y = \frac{8}{x-1}$ where $x > -1$ and $t \neq 1$ since $(t > -1 \text{ and } t \neq 0)$ As $x \rightarrow 1, y \rightarrow \infty$, therefore the curve has a vertical asymptote at $x = 1$. As $x \rightarrow \infty$ and $y \rightarrow 0$, therefore the curve has a horizontal asymptote at $y = 0.$	

10

	At point $T: x = 0 \implies \qquad y - \left(\frac{4}{r}\right) = \frac{-2}{r^2} \left(-2r - 1\right)$ $y = \frac{2(4r+1)}{r^2}$	
	Area of triangle $OST = \frac{1}{2} \left(\frac{2(4r+1)}{r^2} \right) (4r+1)$ $= \left(\frac{4r+1}{r} \right)^2 \text{ units}^2$	
(iv)	C: $x = 2t + 1$, $y = \frac{4}{t}$ Replace x with $x - 1$, replace y with -y	Manageable for most students, except a few were confused about what to replace <i>x</i> and <i>y</i> .
	$x-1=2t+1, -y=\frac{4}{t}$ $x=2t+2, y=-\frac{4}{t}$	Few students used cartesian equations instead of parametric though the question asked for parametric equation.

8	Solution [10] Graphing techniques	
(i)	Since $x = 1$ is a vertical asymptote, therefore $d = 1$. Since the asymptotes intersect at (1, 2), and the oblique asymptote has equation $y = ax + b$: When $x = 1$, $a + b = 2$, $b = 2 - a$.	Generally very well done for this part except for some careless algebraic manipulation errors.
	Since there is a stationary point when $x = 0$: $\frac{dy}{dx} = a - \frac{c}{(x-1)^2}$ $\frac{dy}{dx}\Big _{x=0} = a - c = 0$ Therefore, $c = a$.	Some students did not have the correct expression for $\frac{dy}{dx}$.
(ii)	Since the graph passes through (0, 0): When $x = 0$, $y = 0$, $0 = a(0) + 2 - a + \frac{a}{(0-1)}$	
(iii)	a = 1, b = 1, c = 1 $y = x + 1 + \frac{1}{x - 1}$ $y = x + 1 + \frac{1}{x - 1}$ y = x + 1 y = x + 1 x = 1 x = 1	Mistakes for this part include not labelling the max/min points or the oblique asymptote y = x+1
y = x	$+1+\frac{1}{x-1}$	

9	Solution [10] Function	
(i)	$f: x \mapsto \frac{2}{e^{x^2}} + 1, \ x \in \mathbb{R}$ $y = 2$ $y = f(x)$ $y = 1$ $y = 1$	Very badly done. Majority of the cohort missed out y = 1 as the asymptote and was not reflected on their graph.
	The horizontal line $y = k$, for $1 < k < 3$ intersects the graph of $y = f(x)$ more than once and thus f is not one-one, f does not have an inverse.	Justification was badly explained. Many students wrote the line $y = k$ without specifying the values of k .
(ii)	Largest value of <i>a</i> is 0.	Very well done. Except a bunch of students who have mistaken $a = 3$ when the values we are looking from are from the domain.
(iii)	Let $y = 2e^{-x^2} + 1$	First part of the question
	$y-1=2e^{-x^2}$	students know that they
	$e^{-x^2} = \frac{y-1}{2}$	have to make <i>x</i> the subject of the formula.
	$-x^2 = \ln\left(\frac{y-1}{2}\right)(*)$	
	$x^2 = -\ln\left(\frac{y-1}{2}\right)$	Some students were not familiar with the laws of
	$x = \pm \sqrt{-\ln\left(\frac{y-1}{2}\right)} (**)$	logarithms as well.
	Since $x \le 0$ (found previously in (ii)), $x = -\sqrt{-\ln\left(\frac{y-1}{2}\right)}$	
	$f^{-1}(x) = -\sqrt{-\ln\left(\frac{x-1}{2}\right)} \text{ OR } -\sqrt{\ln\left(\frac{2}{x-1}\right)}$	Many students however missed out the fact that $x \le 0$ and hence were not able to identify the correct sign required for the
(iv)	$\mathbf{R} = (1, 3]$ (from graph)	Verv well done.
()	$\mathbf{R}_{f} = (1, 3)$ (non graph)	
	$D_{g} = R_{g^{-1}} = (1, 3]$	
	Since $R_f \subseteq D_g$, gf exists.	

(v)	Domain of $\mathfrak{g} \mathfrak{f} = Domain of \mathfrak{f} = (-\infty, 0]$	Very badly done. Most
	Domain of $gi = Domain of i = (3, 0]$	students seem to have the
	Range of $gf = (-\infty, 0]$	misconception that Range
	· · · · ·	of $gf = Range of g or f$,
		both are incorrect. They are
		required to draw a graph or
		use mapping method
		wherever necessary.

11	Solution [12] AP GP	
(i)	$S_n = n^2 + 4n$	Generally well done.
	Let T_n be the amount Peter receives from Grandma each year.	Some candidates
	$T_n = (n^2 + 4n) - \left((n-1)^2 + 4(n-1)\right)$	successfully show that
	$= n^{2} - (n-1)^{2} + 4n - 4(n-1)$	$T_n = S_n - S_{n-1} = 2n + 3$.
	= [n-n+1][n+n-1]+4	They went on to show
	=2n+3	that
	Consider	$T_{n-1} = S_{n-1} - S_{n-2} = 2n+1$
	$I_n - I_{n-1}$, which can be quite
	=(2n+3)-(2(n-1)+3)	teulous.
	= 2, a constant.	
(;;)	I nus I_n is an AP	
(11)	$S_n > 1000$	
	$n^2 + 4n > 1000$	
	$n^2 + 4n - 1000 > 0$	
	NORMAL FLOAT AUTO REAL RADIAN MP	
		For students who
	28 -104 29 -43	worked with the
	31 85 32 152	equality $n^2 + 4n = 1000$, they need to justify the
	33 221 34 292	least value of n is 30,
	35 365 36 440	with use of a table.
	37 517 38 596	Some condidates the to
	X=30	work out the first term
		and common difference
	$n = 29, n^2 + 4n - 1000 = -43 < 0$	based on the AP
	$n = 30, n^2 + 4n - 1000 = 20 > 0$ $n = 21, n^2 + 4n - 1000 = 85 > 0$	Thereafter they set up
	n = 51, n + 4n - 1000 = 85 > 0 Thus least $n = 30$.	an expression for S_n .
	Thus, Peter will receive a total of more than \$1000 in the 30 th	It is advisable for them
	year.	to use the $S_n = n^2 + 4n$
	Alternatively	given in the question
	$S_n > 1000$	instead.
	$n^2 + 4n > 1000$	
	$n^2 + 4n - 1000 > 0$	
	$n < -33.7$ (Reject since $n \ge 0$) or $n > 29.7$	

	Thus least $n = 30$. Thus, Peter will receive a total of more than \$1000 in the 30^{th} year.	
(iii)	The amount that Peter will receives from his Grandpa in the	
	long term is not finite as the GP common ratio, $ r = 1.1 > 1$,	
	S_{∞} does not exist.	
	Let W_n be the total sum of money given by Grandpa $W_n = \frac{5(1.1^n - 1)}{1.1 - 1} > 1000$ $5(1.1^n - 1) > 100$ $1.1^n > 21$ $n \ln 1.1 > \ln 21$ x = 21.0	A number of candidates assigned $r = 0.1$.
	n > 31.9 Least $n = 32$	
	Peter receives a total of more than \$1000 from his Grandpa on the 32 nd year. Thus, peter will receive a sum of more than \$1000 from Grandma first.	