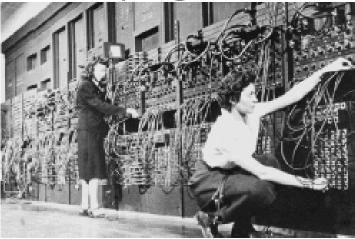
Monte Carlo Simulation

Lesson 8

A Little History

- Ulam, recovering from an illness, was playing a lot of solitaire
- Tried to figure out probability of winning, and failed
- Thought about playing lots of hands and counting number of wins, but decided it would take years
- Asked Von Neumann if he could build a program to simulate many hands on ENIAC



Monte Carlo Simulation

- A method of estimating the value of an unknown quantity using the principles of inferential statistics
- Inferential statistics
 - Population: a set of examples
 - Sample: a proper subset of a population
 - Key fact: a random sample tends to exhibit the same properties as the population from which it is drawn
- Exactly what we did with random walks

An Example

 Given a single coin, estimate fraction of heads you would get if you flipped the coin an infinite number of times

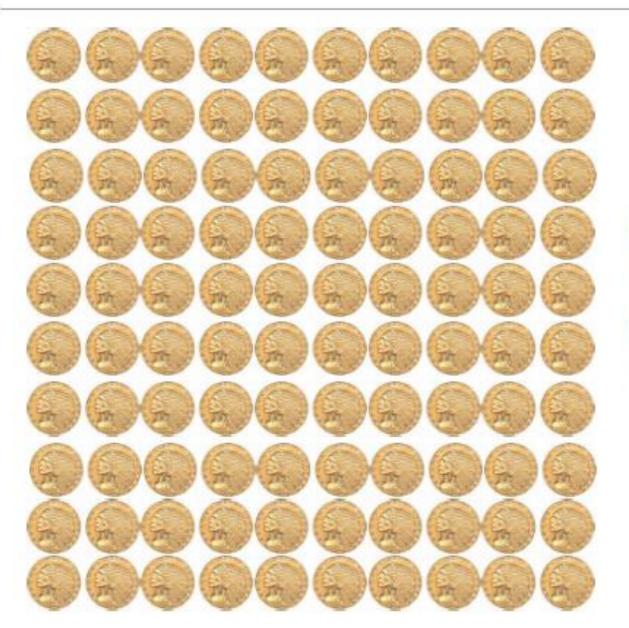
Consider one flip

How confident would you be about answering 1.0?

Flipping a Coin Twice

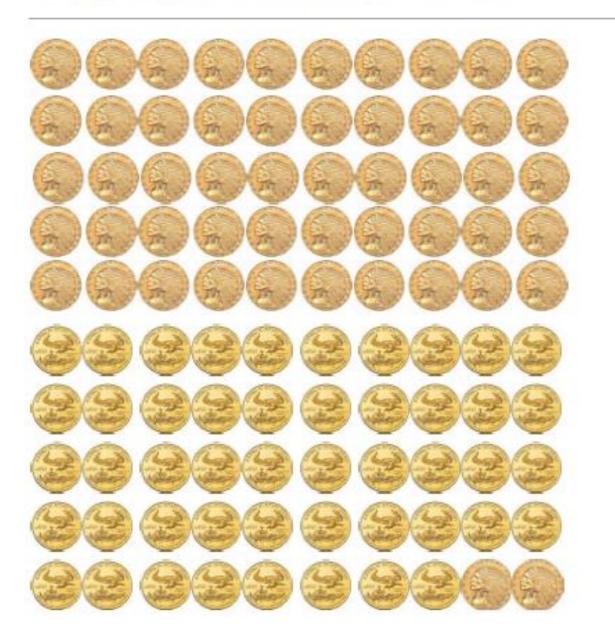
Do you think that the next flip will come up heads?

Flipping a Coin 100 Times



Now do you think that the next flip will come up heads?

Flipping a Coin 100 Times



Do you think that the probability of the next flip coming up heads is 52/100? Given the data, it's your best

But confidence should be low

estimate

Why the Difference in Confidence?

- Confidence in our estimate depends upon two things
- Size of sample (e.g., 100 versus 2)
- Variance of sample (e.g., all heads versus 52 heads)
- As the variance grows, we need larger samples to have the same degree of confidence

Problem

A friend asked you whether or not it would be profitable to bet within twenty-four rolls of a pair of dice he would roll a double 6.

Solve by hand??? By simulation??? Both???

Roulette

image of roulette wheel © unknown. All rights reserved. This content is excluded from our Dreative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. No need to simulate, since answers obvious

Allows us to compare simulation results to actual probabilities

```
import random
```

```
class FairRoulette():
    def init (self):
        self.pockets = []
        for i in range(1,37):
            self.pockets.append(i)
        self.ball = None
        self.pocketOdds = len(self.pockets) - 1
    def spin(self):
        self.ball = random.choice(self.pockets)
    def betPocket(self, pocket, amt):
        if str(pocket) == str(self.ball):
            return amt*self.pocketOdds
        else: return -amt
    def str (self):
        return 'Fair Roulette'
```

How to play it ?

```
game = FairRoulette()
game.spin()
amt = game.betPocket(5,10)
print(amt)
```

```
for i in range(1000):
    game = FairRoulette()
    game.spin()
    amt = game.betPocket(5,10)
    print(amt)
```

```
def playRoulette(game, numSpins, pocket, bet, toPrint):
    totPocket = 0
    for i in range (numSpins):
        game.spin()
        totPocket += game.betPocket(pocket, bet)
    if toPrint:
        print(numSpins, 'spins of', game)
        print ('Expected return betting', pocket, '=', \setminus
               str(100*totPocket/numSpins) + '%\n')
    return (totPocket/numSpins)
random.seed(0)
```

```
game = FairRoulette()
for numSpins in (100, 1000000):
    for i in range(3):
        playRoulette(game, numSpins, 2, 1, True)
```

100 and 1M Spins of the Wheel

100 spins of Fair Roulette Expected return betting 2 = -100.0%

100 spins of Fair Roulette Expected return betting 2 = 44.0%

100 spins of Fair Roulette Expected return betting 2 = -28.0%

1000000 spins of Fair Roulette Expected return betting 2 = -0.046%

1000000 spins of Fair Roulette Expected return betting 2 = 0.602%

1000000 spins of Fair Roulette Expected return betting 2 = 0.7964%

Law of Large Numbers

In repeated independent tests with the same actual probability p of a particular outcome in each test, the chance that the fraction of times that outcome occurs differs from p converges to zero as the number of trials goes to infinity

> Does this imply that if deviations from expected behavior occur, these deviations are likely to be *evened out* by opposite deviations in the future?

Gambler's Fallacy

- "On August 18, 1913, at the casino in Monte Carlo, black came up a record twenty-six times in succession [in roulette]. ... [There] was a near-panicky rush to bet on red, beginning about the time black had come up a phenomenal fifteen times." -- Huff and Geis, How to Take a Chance
- Probability of 26 consecutive reds
- 1/67,108,865
- Probability of 26 consecutive reds when previous 25 rolls were red
- 1/2

Regression to the Mean

Following an extreme random event, the next random event is likely to be less extreme

- If you spin a fair roulette wheel 10 times and get 100% reds, that is an extreme event (probability = 1/1024)
- It is likely that in the next 10 spins, you will get fewer than 10 reds
 - But the expected number is only 5

So, if you look at the average of the 20 spins, it will be closer to the expected mean of 50% reds than to the 100% of the first 10 spins

Casinos Not in the Business of Being Fair

Two Subclasses of Roulette

```
class EuRoulette(FairRoulette):
    def __init__(self):
        FairRoulette.__init__(self)
        self.pockets.append('0')
    def __str__(self):
        return 'European Roulette'
```

```
class AmRoulette(EuRoulette):
    def __init__(self):
        EuRoulette.__init__(self)
        self.pockets.append('00')
    def __str__(self):
        return 'American Roulette'
```

```
random.seed(0)
numTrials = 20
resultDict = {}
games = (FairRoulette, EuRoulette, AmRoulette)
for G in games:
    resultDict[G(). str()] = []
for numSpins in (1000, 10000, 100000, 1000000):
    print('\nSimulate', numTrials, 'trials of',
          numSpins, 'spins each')
    for G in games:
        pocketReturns = findPocketReturn(G(), numTrials,
                                          numSpins, False)
        expReturn = 100*sum(pocketReturns)/len(pocketReturns)
        print('Exp. return for', G(), '=',
             str(round(expReturn, 4)) + '%')
```

Comparing the Games

Simulate 20 trials of 1000 spins each Exp. return for Fair Roulette = 6.56% Exp. return for European Roulette = -2.26% Exp. return for American Roulette = -8.92%

Simulate 20 trials of 10000 spins each Exp. return for Fair Roulette = -1.234% Exp. return for European Roulette = -4.168% Exp. return for American Roulette = -5.752%

Simulate 20 trials of 100000 spins each Exp. return for Fair Roulette = 0.8144% Exp. return for European Roulette = -2.6506% Exp. return for American Roulette = -5.113%

Simulate 20 trials of 1000000 spins each Exp. return for Fair Roulette = -0.0723% Exp. return for European Roulette = -2.7329% Exp. return for American Roulette = -5.212%

Sampling Space of Possible Outcomes

- Never possible to guarantee perfect accuracy through sampling
- Not to say that an estimate is not precisely correct
- Key question:
 - How many samples do we need to look at before we can have justified confidence on our answer?
- Depends upon variability in underlying distribution

Quantifying Variation in Data

$$variance(X) = \frac{\sum_{x \in X} (x - \mu)^2}{|X|}$$
$$\sigma(X) = \sqrt{\frac{1}{|X|} \sum_{x \in X} (x - \mu)^2}$$

Standard deviation simply the square root of the variance

Outliers can have a big effect

 Standard deviation should always be considered relative to mean

For Those Who Prefer Code

def getMeanAndStd(X):
 mean = sum(X)/float(len(X))
 tot = 0.0
 for x in X:
 tot += (x - mean)**2
 std = (tot/len(X))**0.5
 return mean, std

Lesson 08b

- Inferential Statistics 03
 <u>https://colab.research.google.com/drive/158_PpqxjmHarjQRX00p9m</u>

 <u>Bqxpn1e0aFP?usp=sharing</u>
- Monte Carlo Simulation <u>https://colab.research.google.com/drive/18yTS1pKa5k2QVUxQc607N</u> <u>McW-kZe4pR7?usp=sharing</u>
- Assignment (Monte Carlo simulation): Submit .ipynb file on IVY
- Assignment 06 is out in IVY
- Take-home Quiz 03 (due on 11 April 17:00)