Monte Carlo Simulation

A Little History

*Ulam, recovering from an illness, was playing a lot of
solitaire

"Tried to figure out probability of winning, and failed

*"Thought about playing lots of hands and counting
number of wins, but decided it would take years

"Asked Von Neumann if he could hmld aprogram to
simulate many hands on ENIAC g _f | P | V2L et

Monte Carlo Simulation

*A method of estimating the value of an unknown
guantity using the principles of inferential statistics

"|Inferential statistics
> Population: a set of examples
> Sample: a proper subset of a population

> Key fact: a random sample tends to exhibit the same
properties as the population from which it is drawn

"Exactly what we did with random walks

An Example

®Given a single coin, estimate fraction of heads you
would get if you flipped the coin an infinite number of
times

"Consider one flip

How confident would you
be about answering 1.07

Flipping a Coin Twice

Do you think that the next flip will come up heads?

Flipping a Coin 100 Times

(ot o i ot bl
o i i o i
o o o o o
90098998 o1

069060660606 "

3“3332“: come up heads?
o o o ot o
o i o g i
e e el

Flipping a Coin 100 Times

00999 SSPPS Do vouthink
0900889898 | ...
gce““gec the next flip
000008988 & comingup
“QQ heads is 52/100?

Given the data,

it’s your best
estimate

But confidence
should be low

' \ .; :) .". -) ', B .
4 0 2 < 3
- \ B t" g .. L \ pa
? 1 7 r‘ : 3 ¥ » . (‘
n"s A\ T3 T T m
Y L0 L8 " 1" 5
.) 4) £ : -) £ "
(e X ’ - ‘ rl‘() ‘ v \ ' -
) . 3 T L)) . i "‘ D
o ot S “ ok Lol (ol

Why the Difference in Confidence?

"Confidence in our estimate depends upon two things
=Size of sample (e.g., 100 versus 2)

"Variance of sample (e.g., all heads versus 52 heads)

"As the variance grows, we need larger samples to have
the same degree of confidence

Problem

A friend asked you whether or not it would be
profitable to bet within twenty-four rolls of a pair of
dice he would roll a double 6.

Solve by hand??? By simulation??? Both???

Roulette

‘mage of roulette wheel © unknown. All rights reserved. This content is excluded from our
“reative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-uss/.

No need to
simulate, since
answers obvious

Allows us to
compare
simulation results
to actual
probabilities

Tmport random

class FailirRoulette () :
def 1nit (self):
self.pockets = |[]
for 1 in range(l,37):
self.pockets.append (1)
self.ball = None
self.pocketOdds = len(self.pockets) - 1
def spilin(self):

self.ball = random.cholce (self.pockets)
detf betPocket (self, pocket, amt):
1T str(pocket) == str(self.ball):

return amt*self.pocketOdds
else: return -—-amt
det str (self):
return 'Falr Roulette'

How to play it ?

game = FailrRoulette ()
game.spin ()

amt = game.betPocket (5,10)
print (amt)

1 range (1000) :

game = FailrRoulette ()
game.spin ()

amt = game.betPocket (5,10)
print (amt)

def playRoulette (game, numSpins, pocket, bet, toPrint):
totPocket = 0

for 1 1n range (numSpins) :
game.spin ()

totPocket += game.betPocket (pocket, bet)
1T toPrint:

print (numSpins, 'spins of', game)
print ('Expected return betting', pocket, '=",\

str (100*totPocket/numSpins) + '3\n')
return (totPocket/numSpins)

random. seed (0)
game = FairRoulette ()
for numSpins 1n (100, 1000000) :
for 1 1n range(3):
playRoulette (game, numSpins, 2, 1, True)

100 and 1M Spins of the Wheel

100 spins of Fair Roulette
Expected return betting 2 = -100.0%

100 spins of Fair Roulette
Expected return betting 2 = 44.0%

100 spins of Fair Roulette
Expected return betting 2 = -28.0%

1000000 spins of Fair Roulette
Expected return betting 2 = -0.046%

1000000 spins of Fair Roulette
Expected return betting 2 = 0.602%

1000000 spins of Fair Roulette
Expected return betting 2 = 0.7964%

Law of Large Numbers

"In repeated independent tests with the same actual

probability p of a particular outcome in each test, the
chance that the fraction of times that outcome occurs

differs from p converges to zero as the number of trials
goes to infinity

Does this imply that if
deviations from expected
behavior occur, these
deviations are likely to be
evened out by opposite
deviations in the future?

Gambler’s Fallacy

"“On August 18, 1913, at the casino in Monte Carlo,
black came up a record twenty-six times in succession
[in roulette]. ... [There] was a near-panicky rush to bet
on red, beginning about the time black had come up a
phenomenal fifteen times.” -- Huff and Geis, How to
Take a Chance

"Probability of 26 consecutive reds
. 1/67,108,865

"Probability of 26 consecutive reds when previous 25
rolls were red

3 1/2

Regression to the Mean

*Following an extreme random event, the next random
event is likely to be less extreme

*If you spin a fair roulette wheel 10 times and get 100%
reds, that is an extreme event (probability = 1/1024)

"It is likely that in the next 10 spins, you will get fewer
than 10 reds

> But the expected number is only 5

®So, if you look at the average of the 20 spins, it will be
closer to the expected mean of 50% reds than to the
100% of the first 10 spins

Casinos Not in the Business of Being Fair

Two Subclasses of Roulette

class EuRoulette(FairRoulette):
def __1nit__(self):
FairRoulette.__1ni1t__(self)
self.pockets.append('0")
def __str__(self):
return 'European Roulette’

class AmRoulette(EuRoulette):
def __1ni1t__(self):
EuRoulette.__1ni1t__(self)
self.pockets.append('00")
def __str__(self):

return 'American Roulette'’

random.seed (0)
numTrials = 20
resultDict = {}
games = (FairRoulette, EuRoulette, AmRoulette)
for G 1n games:
resultDict[G(). str ()] = []
for numSpins 1n (1000, 10000, 100000, 1000000):
print ('\nSimulate', numTrials, 'trials of',
numSpins, 'splns each')
for G 1n games:

pocketReturns = findPocketReturn(G(), numTrials,

numSpins, rFalcse)
expReturn = 100*sum(pocketReturns) /len (pocketReturns)
print ('Exp. return for', G(, '=',

str (round (expReturn, 4)) + '35")

Comparing the Games

Simulate 20

Exp.
Exp.
Exp.

return
return
return

Simulate 20

Exp.
Exp.
Exp.

return
return
return

Simulate 20

Exp.
Exp.
Exp.

return
return
return

Simulate 20

Exp.
Exp.
Exp.

return
return
return

trials of 1000 spins each
for Fair Roulette = 6.56%
for European Roulette -2.26%
for American Roulette -8.92%

trials of 10000 spins each

for Fair Roulette = -1.234%

for European Roulette -4.168%
for American Roulette -5.752%

trials of 100000 spins each
for Fair Roulette = 0.8144%
for European Roulette -2.6506%
for American Roulette -5.113%

trials of 1000000 spins each
for Fair Roulette = -0.0723%
for European Roulette -2.7329%
for American Roulette -5.212%

Sampling Space of Possible Outcomes

"Never possible to guarantee perfect accuracy through
sampling

"Not to say that an estimate is not precisely correct

"Key question:

> How many samples do we need to look at before we can
have justified confidence on our answer?

"Depends upon variability in underlying distribution

Quantifying Variation in Data

ZxE}f(x o ﬂ)z
| X]

o(X) = \/;lq S (x - 1)

"Standard deviation simply the square root of the
variance

variance(X) =

=Qutliers can have a big effect

*Standard deviation should always be considered
relative to mean

For Those Who Prefer Code

def getMeanAndStd(X):

mean = sum(X)/float(len(X))
tot = 0.0

for x in X:

tot += (X - mean) %2
std = (tot/len(X))**0.5
return mean, std

Lesson 08b

* Inferential Statistics 03
https://colab.research.google.com/drive/158 PpgxjmHarjQRX00p9m
BaxpnleOaFP?usp=sharing

* Monte Carlo Simulation
https://colab.research.google.com/drive/18yTS1pKa5k2QVUxQc607N

McW-kZedpR7?usp=sharing
* Assignment (Monte Carlo simulation): Submit .ipynb file on IVY

* Assignment 06 is out in IVY
* Take-home Quiz 03 (due on 11 April 17:00)

https://colab.research.google.com/drive/158_PpqxjmHarjQRX00p9mBqxpn1e0aFP?usp=sharing
https://colab.research.google.com/drive/18yTS1pKa5k2QVUxQc607NMcW-kZe4pR7?usp=sharing

