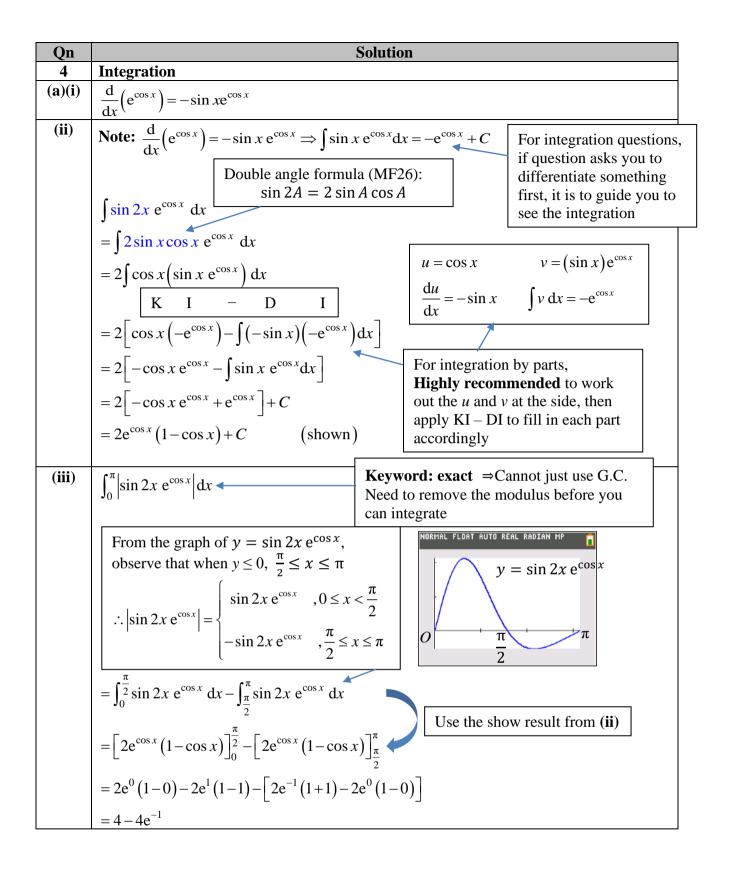
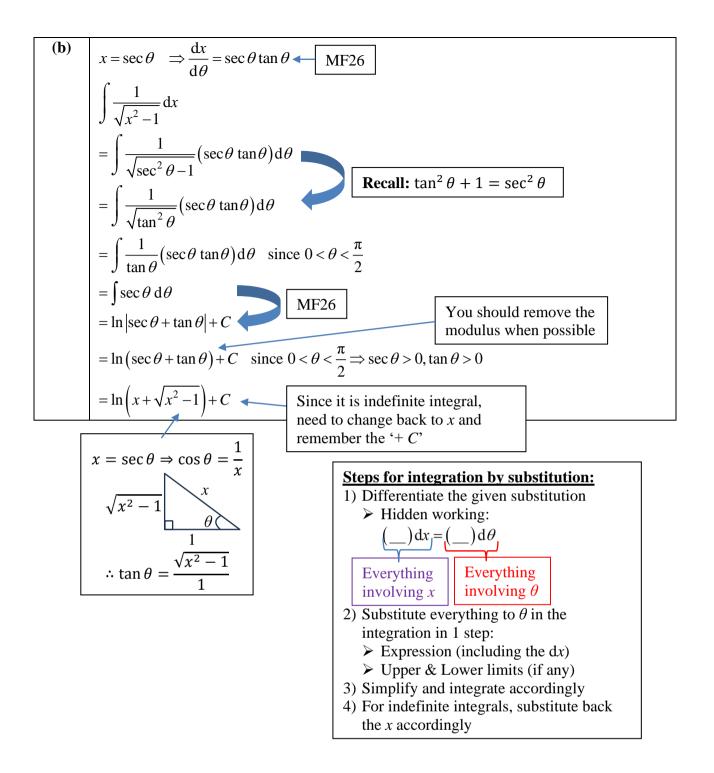

Qn	S	Solution	
1	Maclaurin's Series		
(i)	$y = \ln\left(1 + 3x + 2x^2\right)$		
	$\frac{dy}{dx} = \frac{3+4x}{1+3x+2x^2} \\ (1+3x+2x^2)\frac{dy}{dx} = 3+4x$	Useful technique: Multiply both sides by the denominator before further differentiation. AVOID using quotient rule for further differentiation as much as possible.	
	diff wrt <i>x</i> ,		
	$(1+3x+2x^2)\frac{d^2y}{dx^2}+(3+4x)\frac{dy}{dx}=4$ (shows)	$\frac{y}{2} + (3+4x)\frac{dy}{dx} = 4$ (shown) Use implicit differentiation	
	diff wrt <i>x</i> ,		
	$\left(1+3x+2x^{2}\right)\frac{d^{3}y}{dx^{3}}+\left(3+4x\right)\frac{d^{2}y}{dx^{2}}+4\frac{dy}{dx}+(3+4x)\frac{d^{2}y}{dx^{2}}+4\frac{dy}{dx}+(3+4x)\frac{d^{2}y}{dx^{2}}+4\frac{dy}{dx}+(3+4x)\frac{d^{2}y}{dx^{2}}+4\frac{dy}{dx}+(3+4x)\frac{d^{2}y}{dx^{2}}+4\frac{dy}{dx}+(3+4x)\frac{d^{2}y}{dx^{2}}+4\frac{dy}{dx}+(3+4x)\frac{d^{2}y}{dx^{2}}+4\frac{dy}{dx}+(3+4x)\frac{d^{2}y}{dx^{2}}+4\frac{dy}{dx}+(3+4x)\frac{d^{2}y}{dx^{2}}+4\frac{dy}{dx}+(3+4x)\frac{d^{2}y}{dx^{2}}+4\frac{dy}{dx}+(3+4x)\frac{d^{2}y}{dx^{2}}+4\frac{dy}{dx}+(3+4x)\frac{d^{2}y}{dx^{2}}+4\frac{dy}{dx}+(3+4x)\frac{d^{2}y}{dx}+(3+4x)d$	$(3+4x)\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 0$	
	$\left(1+3x+2x^{2}\right)\frac{d^{3}y}{dx^{3}}+\left(6+8x\right)\frac{d^{2}y}{dx^{2}}+4\frac{dy}{dx}=0$		
	when $x = 0$, $y = 0$, $\frac{dy}{dx} = 3$, $\frac{d^2y}{dx^2} = -5$,	Find the values of $f(0)$,	
		f'(0), $f''(0)$ and $f'''(0)$. itute into the general form of the aurin Series that can be found in MF26	
(;;)	<u> </u>		
(ii)	$y = \ln(1 + 3x + 2x^{2})$ = $3x + 2x^{2} - \frac{(3x + 2x^{2})^{2}}{2} + \frac{(3x + 2x^{2})^{3}}{3} + 3x + 2x^{2} - \frac{1}{2}(9x^{2} + 12x^{3} + 4x^{4}) + \frac{1}{3}(2x^{2} + 3x^{2} + 3x^{3} + \dots \text{ (verified)})$	the term in x and show clearly that it is the same as the	
	$\frac{\text{Alternative:}}{y = \ln(1+3x+2x^2) = \ln[(1+x)(1+2x)]}$ $y = \ln(1+x) + \ln(1+2x)$ Using the standard series in MF26, $y = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + \left(2x - \frac{(2x)^2}{2} + \frac{(2x)^3}{3}\right)$	-	
	$= 3x - \frac{5}{2}x^{2} + 3x^{3} + \dots \text{ (verified)}$)	

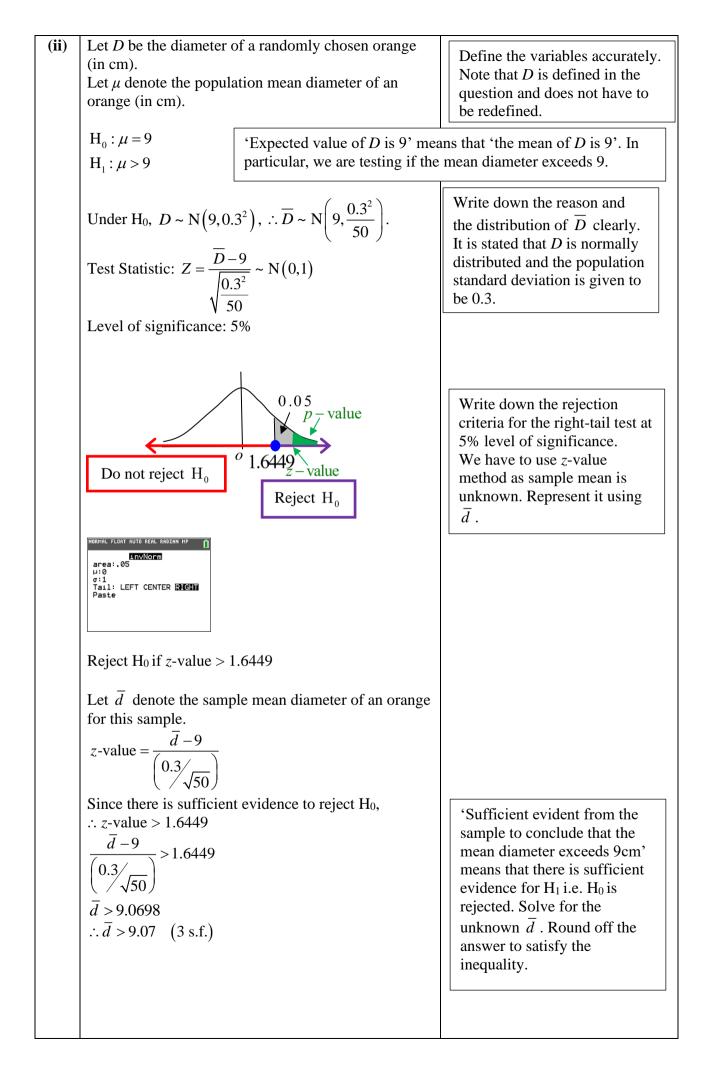

(iii)
$$\ln\left(1+3x+2x^2\right) = 3x - \frac{5}{2}x^2 + 3x^3 + \dots$$

Sub $x = \frac{1}{2}$,
$$\ln\left(1+3\left(\frac{1}{2}\right) + 2\left(\frac{1}{2}\right)^2\right) = 3\left(\frac{1}{2}\right) - \frac{5}{2}\left(\frac{1}{2}\right)^2 + 3\left(\frac{1}{2}\right)^3 + \dots$$

Substitute $x = \frac{1}{2}$ into both sides of the Maclurin Series to get the approximate value for $\ln 3$
 $\therefore \ln 3 \approx \frac{5}{4}$



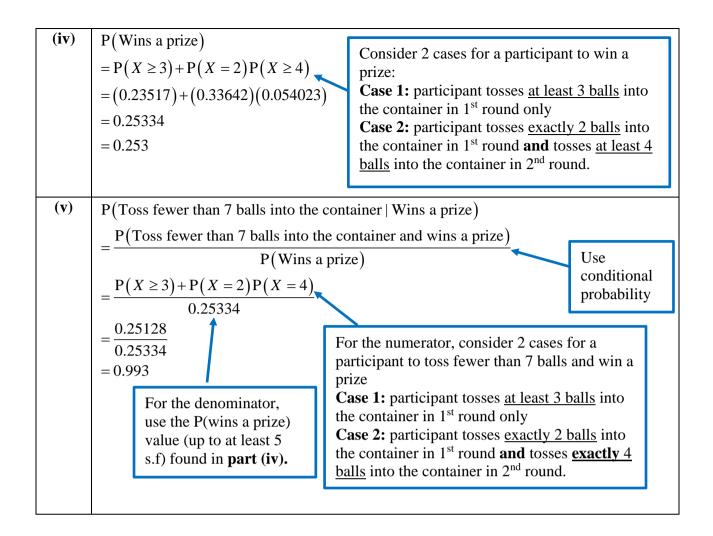
TMJC/2024 JC2 Preliminary Examination Suggested Solutions/H2 Math (9758/02)/Math Dept


Qn	Solution	
5	Probability	
(i)	$P(B) = P(A \cup B) - P(A \cap B')$	
	$=\frac{9}{16}-\frac{1}{16}$	
	$=\frac{6}{16}=\frac{1}{2}$	
(ii)	$P(A \models R) = \frac{1}{1} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 7$	
	$= \frac{8}{16} = \frac{1}{2}$ $P(A \cap B) = \frac{1}{2} \left(1 - \frac{1}{8} \right) = \frac{7}{16}$ $P(A \cap B) = \frac{1}{2} - \frac{7}{16} = \frac{1}{16} \text{and} P(A)P(B) = \frac{1}{8} \left(\frac{1}{2} \right) = \frac{1}{16}$	
	$P(A \cap B) = \begin{bmatrix} 1 & 7 & -1 \\ -1 & -1 \end{bmatrix}$ and $P(A)P(B) = \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$	
	$r(A \cap B) = \frac{1}{2} - \frac{1}{16} = \frac{1}{16}$ and $r(A)r(B) = \frac{1}{8}(\frac{1}{2}) = \frac{1}{16}$	
	Since $P(A)P(B) = P(A \cap B) = \frac{1}{16}$, the events A and B are independent.	
	() () 16	
	Alternatively	
	Given that $P(A \cap B') = \frac{1}{16}$ and $P(A) \times P(B') = \frac{1}{8} \times \frac{1}{2} = \frac{1}{16}$	
	10 0 2 10	
	Since $P(A)P(B') = P(A \cap B') = \frac{1}{16}$, the <u>events A and B' are independent</u> .	
	\therefore the events A and B are independent.	
(iii)	Since C is independent of A , \therefore the events of A' and C are independent.	
	$P(A' \cap C) = P(A') \times P(C)$	
	$=\left(1-\frac{1}{8}\right)\left(\frac{3}{8}\right)$	
	21	
	$=\frac{-1}{64}$	
(iv)	Since A and B are independent, A' and B are also independent,	
	$P(A' \cap B) = P(A')P(B) = \frac{7}{8}\left(\frac{1}{2}\right) = \frac{7}{16}$	
	() () () 8(2) 16	
	Let $D((R \circ C) \circ A)$ wand $D(A \circ R \circ C)$ w	
	Let $P((B \cap C) \cap A') = x$ and $P(A' \cap B' \cap C') = y$	
	$\left(\begin{array}{cc} \frac{1}{22} & \left(\frac{3}{64}\right) \frac{7}{16} - x \end{array}\right)$	
	$\left \left\langle \frac{1}{2} \right\rangle \left\langle \frac{1}{24} \right\rangle \right\rangle$	
	$\left(\begin{array}{c} \frac{2}{64} \\ \frac{1}{64} \\ x \end{array}\right)$	
	C $\frac{21}{64} - x$ y	
	From Venn diagram,	
	$\frac{1}{32} + \frac{3}{64} + \frac{1}{64} + \frac{2}{64} + \frac{7}{16} - x + x + \frac{21}{64} - x + y = 1$	
	57	
	$\frac{57}{64} - x + y = 1$	
I		

$$y = \frac{7}{64} + x$$

For minimum y, minimum $x = 0$, $\Rightarrow y = \frac{7}{64}$
For maximum y, maximum $x = \frac{21}{64}$, $\Rightarrow y = \frac{7}{64} + \frac{21}{64} = \frac{7}{16}$
 $\therefore \frac{7}{64} \le P(A' \cap B' \cap C') \le \frac{7}{16}$

Qn	S	Solution
6	DRV	
(a)(i)	p+2p+5p=1 Total sum of probabilities = 1	
	$p = \frac{1}{8}$	Case 1. 1 Pull's ave and 1 outer ring
	$P(X = 6) = \left(\frac{5}{8}\right) \left(\frac{1}{8}\right) 2! + \left(\frac{2}{8}\right)^2 = \frac{7}{32} - \frac{1}{8}$	Case 1: 1 Bull's eye and 1 outer ring $\left(\frac{5}{8}\right)\left(\frac{1}{8}\right)2!$
	$P(X=2) = \left(\frac{-1}{8}\right) = \frac{-1}{64}.$	No of cases = No of ways to permute 1 Bull's eye and 1 outer ring
		Case 2: 2 inner ring
		$\left(\frac{2}{8}\right)^2$ There is only one case.
	$P(X = 10) = \left(\frac{1}{8}\right)^2 = \frac{1}{64}.$	
	$\begin{array}{ c c c c c c c c } x & 2 & 4 \\ \hline P(X = x) & \frac{25}{64} & \frac{5}{16} \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
(ii)	Using GC, $E(X) = 4$	
(iii)	For the game to be fair, $E\left(\frac{X}{2}-k\right) = 0 \Rightarrow \frac{1}{2}E(X)-k = 0 \Rightarrow k = 2.$	
	Expected payout Cost of 1 round	
	Idea:Fair game refers to no loss or profit from playing the game.Hence, expected payout (expectation) $- \cos t$ of 1 round $= 0$	


Qn	Solution			
7	Correlation and Regression			
(i)	$\begin{array}{c} y \\ 190 \\ x \\ x \\ x \end{array}$	x x x x x x	[Only some did not label the max and min values on scatter diagram.
	$90 + x^{-1}$	36		
		diagram, as the daily average temperature increases , the number of acreases at a decreasing rate . (or as <i>x</i> increases , <i>y</i> increases at a Note: Comment the relationship from scatter diagram instead of using <i>r</i> value		
(ii)	For $y = a + bx$, r val	ue = 0.95143 = 0.9	951 (3 s.f.)	
	Since $ r = 0.989$ fo	(-y) = c + dx, r value = $-0.98920 = -0.989$ (3s.f.) (0.989) for the model $\ln(200 - y) = c + dx$ is closer to 1 than the $ r = 0.951$ for $r = a + bx$, hence $\ln(200 - y) = c + dx$ is a better model.		
	OR			
	Since the product n -0.989 is closer to	Since the product moment correlation coefficient for the model $\ln(200 - y) = c + dx$ of -0.989 is closer to -1 than the product moment correlation coefficient for the model $y = a + bx$ of 0.951 to 1, hence $\ln(200 - y) = c + dx$ is a better model. $\ln(200 - y) = 8.7493 - 0.18032x = 8.75 - 0.180x$ Need to compare the $ r $ value of both models or r values of both models.		
	$\ln(200 - y) = 8.7493$			
(iii)	When $x = 37$, $y =$	192 (3 s.f.)		
	The estimate is not n	t reliable as $x = 37$ is outside the data range $22 \le x \le 36$ and a linear $(200 - y)$ and x may not hold. Need to justify that the value of 37 is outside the data range.		
(iv)	The value of 200 is per day.	is the theoretical maximum number of popsicles that the store can sell Keywords: theoretical maximum number of popsicles sold or the number of popsicles sold will approach 200.		

Qn	Solution	
8	Hypothesis Testing	Comments
(i)	Let X be the mass of a randomly chosen orange (in grams). Let μ denote the population mean mass of an orange (in grams). $s^2 = \frac{40}{40-1} (4^2) = \frac{640}{39} = 16.410$	Define the variables accurately. 4 is sample standard deviation. Use the formula
	$\bar{x} = 364.2$ H ₀ : $\mu = 365$	$s^{2} = \frac{n}{n-1} \times \text{sample variance to}$ find s^{2} . The fruit seller claims that the
	$H_1: \mu < 365$	mean mass is 365g. To test if he has overstated the mean, we test if the mean is less than 365g.
	Under H ₀ , since $n = 40$ is large, by Central Limit Theorem, $\overline{X} \sim N\left(365, \frac{\left(\frac{640}{39}\right)}{40}\right)$ approximately.	Since the distribution of X is unknown and the sample size is large, we can use Central Limit Theorem to find the distribution of \overline{X} . Ensure phrasing is complete and CLT is spelt out in full.
	Test statistic: $Z = \frac{\overline{X} - 365}{\sqrt{\frac{640}{39}}} \sim N(0,1)$	Standardise \overline{X} to obtain the test statistic.
	Level of significance: 5% Reject H ₀ if p -value < 0.05	Write down the level of significance and the rejection criteria. We can use <i>p</i> -value since there are no unknowns in the question.
	Under H ₀ , using G.C., p -value = 0.10583	
	Since p -value = 0.106 > 0.05, we do not reject H ₀ and conclude that there is insufficient evidence at 5% level, that the population mean mass of the orange is less than 365g. Hence, the fruit seller has not overstated the mean at 5% level.	Take note of what is necessary in the conclusion:1. Reject/do not reject H_0 2. Level of significance3. Sufficient/insufficient evidence for H_1 (written in context)The question is whether the
		mean is overstated, not whether the fruit seller's claim is valid. Answer the question.

(iii)	Since $\overline{d} = 8.9 < 9.07$ is outside the rejection region found in (ii), we do not reject H ₀ and conclude that there is insufficient evidence, at 5% level of significance, that the population mean diameter of the orange is more than 9 cm.	Note that the hypotheses and sample size for (ii) and (iii) are the same. The population variance is also constant. Hence we can use the result in (ii).
	Take note of what is necessary in the conclusion:1. Reject/do not reject H02. Level of significance3. Sufficient/insufficient evidence for H1	From (ii), for H_0 to be rejected, the sample mean is greater than 9.07. Since the sample mean is less than 9.07 for this part, we do not reject H_0 . Ensure that clear reasoning is given and conclusion is complete.

Qn	Solution		
9	Binomial Distribution & P	ibution & Probability	
(i)	in the com 1. Ind 2. Co The other 2	For Binomial Distribution, need to explain the following assumptions in the context of the question	
	-	a randomly chosen <u>ball tossed by the participant goes into the container</u> endent of <u>any other balls tossed</u> .	
	2. The probability that <u>container</u> is constant	bability that a randomly chosen ball <u>tossed by the participant goes into the</u> r is constant at 0.35.	
	The participant may adjust th	may adjust the toss after he succeeds or fails, hence the condition of	
	independence may not hold.		
(ii)	$X \sim B(5, 0.35)$		
	$P(X \ge 3) = 1 - P(X \le 2) \longleftarrow$	Important to use complement to change	
		to $1 - P(X \le 2)$ so that GC Binomcdf	
	= 0.23517	command can be used	
(***)	= 0.235		
(iii)	Let Y be the number of particle $Y \sim B(10, 1-0.23517) \Rightarrow Y \sim Y$	cipants, out of 10, who did not win a prize. P(10,0.76483)	
	· · · · · · · · · · · · · · · · · · ·	Important:	
	$P(Y \le 6) = 0.191$	Use 5 s.f value define all	
	Altenative solution:	mber of participants, out of 10, who won a prize.	
	$W \sim B(10, 0.23517)$	17) At most 6 (out of 10) did not win a price	
	$\mathbf{P}(W \ge 4) = 1 - \mathbf{P}(W \le 3)$	At most 6 (out of 10) <u>did not win</u> a prize is equivalent to At least 4 (out of 10) <u>won</u> a prize	
	= 0.191		

Qn	Solution		
10 (i)	Normal and Sampling Distributions		
(1)	0.12 and bot from the me the curve be Thus, tail en	e standard deviation (SD) is h 1.4 and 2.3 is 3.75 SD away an. This meant the area under tween 1.4 and 2.3 is close to 1. d of the curve at 1.4 and 2.3 al close to the axis.	
	1.4 1.85 23 N	fass (in kg)	
(ii)	Let <i>X</i> be the mass of a randomly chosen papaya (in kg).		
	$X \sim N(1.85, 0.12^2)$		
	Let <i>Y</i> be the mass of a randomly chosen watermelon (i	n kg).	
	$Y \sim N(6.5, 0.72^2)$ Note: You must		
	$\mathbf{D}(\mathbf{V}, 1, 7) = 0.10 (10) (10) (10)$	e variables used clearly and	
(iii)		wn the distribution with the r values evaluated.	
(111)	$Var(Y-X) = 0.72^{2} + 0.12^{2} = 0.5328$		
	$\operatorname{var}(I - X) = 0.72 + 0.12 = 0.5528$		
	$Y - X \sim N(4.65, 0.5328)$ Note:		
	P(V = V > 4.5) = 0.581 (3 s f) a) $Var(4.5) = 0.581 (3 s f)$	$(Y - X) = \operatorname{Var}(Y) + \operatorname{Var}(X)$	
(iv)	0) 0.052	8 is an exact answer. Do NOT off to 3 s.f.	
	$P\left(\overline{Y} > k\right) = 0.2$ $P\left(Z > \frac{k - 6.5}{0.72/\sqrt{n}}\right) = 0.2$		
	$\frac{k-6.5}{0.72/\sqrt{n}} = 0.84162$		
	$k = 6.5 + \frac{0.606}{\sqrt{n}}$		
(v)	Let $T = 2.20(X_1 + X_2 + X_3) + 1.45(Y_1 + Y_2 + Y_3 + Y_4)$ E $(T) = 2.20 \times 3 \times 1.85 + 1.45 \times 4 \times 6.5 = 49.91$	Note : Do NOT round off exact answer to 3 s.f.	
	$Var(T) = 2.20^{2} \times 3 \times 0.12^{2} + 1.45^{2} \times 4 \times 0.72^{2} = 4.568832$	In this question 40.01 and	
	$T \sim N(49.91, 4.568832)$	In this question, 49.91 and 4.568832 are both exact	
	P(T > 50) = 0.483 (3 s.f.)	answers.	
(vi)	We assume that the distributions of the masses of all	fruits are independent of one	
	another. Note: The key words are in bold. Common Mistake: Phrasings by students are not clear in illustrating the new of independence between the distribution of masses of any two randomly chosen papayas (watermelons).		