Jurong Pioneer Junior College

H2 Mathematics End-of-Year Exam P1 solution

Question	Solution	Remarks
1(i)	(-1.73,3.39) 0 x	Set min t=-2 in window setting Need to label and exclude the end-point
1(ii)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 1 + 2\mathrm{e}^{t}, \frac{\mathrm{d}y}{\mathrm{d}t} = 2 - \mathrm{e}^{-t}$ $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2 - \mathrm{e}^{-t}}{1 + 2\mathrm{e}^{t}}$	Note that $\frac{d}{dt}(e^t) = e^t$
	At P, $\frac{dy}{dx} = \frac{1}{3}$ Gradient of normal at P = -3 At P, x = 2, y = 1 The equation of normal is y - 1 = -3(x - 2) y = -3x + 7	Note that $e^0 = 1$
2(i)	(1, -3): $\frac{a}{4} + b + c = -3(1)$ (-5,-21): $\frac{a}{-2} - 5b + c = -21(2)$ $\frac{dy}{dx} = -\frac{a}{(x+3)^2} + b$ At $x = -5$: $\frac{dy}{dx} = 0 \Rightarrow -\frac{a}{4} + b = 0(3)$ Using GC: a = 8, b = 2, c = -7 So the equation of C is $y = \frac{8}{x+3} + 2x - 7$	Since there are 3 unknowns, we need 3 equations. Note that <i>C</i> has a stationary point (-5, -21) means that <i>C</i> (i) passes through (-5, -21); (ii) $\frac{dy}{dx} = 0$ at $x = -5$
(ii)	The two equations of asymptotes are: x = -3 y = 2x - 7	Vertical asymptote: $x = -3$ Oblique asymptote: $y = bx + c$

Question	Solution	Remarks
3	$x^2 y - \tan^{-1} y = \frac{3}{\pi}\pi$	
	4 Differentiate wrt r	
	$x^{2} \frac{dy}{dx} + y(2x) - \frac{1}{1+y^{2}} \left(\frac{dy}{dx}\right) = 0$	
	$\frac{\mathrm{d}y}{\mathrm{d}x}\left(\frac{1}{1+y^2}-x^2\right) = 2xy$	
	$\frac{dy}{dx} = \frac{2xy}{\left(\frac{1}{1+y^2} - x^2\right)} = \frac{2xy(1+y^2)}{1-x^2 - x^2y^2}$	
	when $y = 1$	
	$x^{2}(1) - \tan^{-1}1 = \frac{3}{4}\pi$	We use degree only for
	$x^2 - \frac{\pi}{4} = \frac{3}{4}\pi$	stated). Hence $\tan^{-1} 1 = \frac{\pi}{4}$
	$x^2 = \pi$	and not 45.
	$x = \pm \sqrt{\pi}$	
	Since $x > 0$, $x = \sqrt{\pi}$	
	$\frac{dy}{dt} = \frac{2\sqrt{\pi} \left(1 + 1^2\right)}{4\sqrt{\pi}} = \frac{4\sqrt{\pi}}{4\sqrt{\pi}}$ (exact)	
	$dx 1 - \pi - \pi (1)^2 = 1 - 2\pi $ (c) (c)	
4(i)	(0.0)	The semi-circle must
	(0,3) (-3,0) (-3,0) x=-1 (0,3) (2.70,1.31) (3,0)	You need to indicate the vertical asymptote of the ln graph (GC does not show)
(ii)	The point of intersection is (2.70, 1.31)	
	So the solution is $-1 < x < 2.70$	
(iii)	Replace <i>x</i> by x^2 : $-1 < x^2 < 2.6997$	
	Method 1 -1.64 $y=2.6997y=-1Using Graph -1.64 < x < 1.64$	Proper method (in getting final answer) must be shown in order to gain full credit.

<u>Method 2</u> Since $x^2 ≥ 0$, $-1 < x^2 < 2.6997$ can be simplified to $x^2 < 2.6997$ (x - 1.64)(x + 1.64) < 0 -1.64 < x < 1.64	It is incorrect to reject the part on $-1 < x^2$. Use of identity $a^2 - b^2 = (a + b)(a - b)$

Question	Solution	Remarks
5(i)	Let $y = \frac{1}{3} (e^{x-2} - 1)$ $e^{x-2} - 1 = 3y$ $x - 2 = \ln(3y + 1)$ $x = \ln(3y + 1) + 2$	
	$f^{-1}(x) = \ln(3x+1) + 2, x > 0$	$\mathbf{D}_{\mathbf{f}^{-1}} = \mathbf{R}_{\mathbf{f}}$
(ii)	As the graph of f ⁻¹ intersects the graph of f in the line $y = x$, the solution of $f(x) = f^{-1}(x)$ is the same as the solution of $f(x) = x$. Hence $\frac{1}{3}(e^{x-2}-1) = x$ $e^{x-2} = 3x+1$ Use GC, the solution is $x = 4.72$	Clear explanation must be given as well as how $e^{x-2} = 3x+1$ is obtained. Intersection point satisfies x > 2
(iii)	$R_{f} = (0, \infty) \text{ and } D_{g} = (-\infty, \infty)$ So $R_{f} \subseteq D_{g}$, gf exists $gf(x) = g(\frac{1}{3}(e^{x-2}-1)) = \frac{1}{9}(e^{x-2}-1)^{2}+1, x > 2$	Justification of $R_f \subseteq D_g$ should be given (i.e. $R_f = (0, \infty)$ & $D_g = (-\infty, \infty)$ $D_{gf} = D_f$

Question	Solution	Remarks
6(a)	$\mathbf{u} \bullet \mathbf{v} = 0 \implies \mathbf{u} \perp \mathbf{v} \text{ or } \mathbf{u} \text{ is a zero vector or}$	Question does not indicate the
	v is a zero vector	vector is non- zero vector.
(b)(i)	Since <i>N</i> lies on <i>l</i> , $\overrightarrow{ON} = \frac{1}{3}\mathbf{a} + \lambda (2\mathbf{b} - \mathbf{a})$ for some λ	Use the concept that a point lies
	Since AN is perpendicular to l , $\overrightarrow{AN} \bullet (2\mathbf{b} - \mathbf{a}) = 0$	on a line, its position vector satisfies the
	$\left(\left(-\frac{2}{3}-\lambda\right)\mathbf{a}+2\lambda\mathbf{b}\right)\bullet\left(2\mathbf{b}-\mathbf{a}\right)=0$	equation of the line.
	$\left(-\frac{2}{3}-\lambda\right)\mathbf{a}\bullet 2\mathbf{b}+\left(\frac{2}{3}+\lambda\right)\mathbf{a}\bullet\mathbf{a}+4\lambda\mathbf{b}\bullet\mathbf{b}-2\lambda\mathbf{a}\bullet\mathbf{b}=0$	
	Since a and b are perpendicular, $\therefore \mathbf{a} \cdot \mathbf{b} = 0$	
	$\left(\frac{2}{3} + \lambda\right) \mathbf{a} \cdot \mathbf{a} + 4\lambda \mathbf{b} \cdot \mathbf{b} = 0$	
	$\left(\frac{2}{3}+\lambda\right)\left \mathbf{a}\right ^{2}+4\lambda\left \mathbf{b}\right ^{2}=0$	
	$\left(\frac{2}{3}+\lambda\right)(4)+4\lambda(1)=0$	
	$\lambda = -\frac{1}{3}$	
	$\overrightarrow{ON} = \frac{1}{3}\mathbf{a} - \frac{1}{3}(\mathbf{2b} - \mathbf{a}) = \frac{2}{3}\mathbf{a} - \frac{2}{3}\mathbf{b}$	
(ii)	Area of triangle $OAN = \frac{1}{2} \left \overrightarrow{OA} \times \overrightarrow{ON} \right $	Apply area of triangle using
	$=\frac{1}{2}\left \mathbf{a}\times\left(\frac{2}{3}\mathbf{a}-\frac{2}{3}\mathbf{b}\right)\right $	cross product.
	$= \frac{1}{3} \mathbf{a} \times (\mathbf{a} - \mathbf{b}) $	
	$=\frac{1}{3} \mathbf{a}\times\mathbf{a}-\mathbf{a}\times\mathbf{b} $	
	$= \frac{1}{3} 0 - \mathbf{a} \times \mathbf{b} $	
	$=\frac{1}{3} \mathbf{a} \mathbf{b} \sin 90^{\circ} $	
	$=\frac{1}{3}(2)(1)(1)$	
	$=\frac{2}{3}$	

Question	Solution	Remarks
7a(i)	$y = f(2x) + 1$ $y = 3$ $(0, 1)$ $(-\frac{1}{2}, 0)$ $x = \frac{1}{2}$	Note that $y = f$ (2x) is a scaling parallel to the x-axis by a factor of $\frac{1}{2}$. Label all intercepts and asymptotes clearly
(ii)	$y = \frac{1}{f(x)} \qquad y \qquad y = \frac{1}{2}$	Label all intercepts and asymptotes clearly. Note that the <i>x</i> - intercept at (1,0) should not be drawn as a 'sharp' point, it should be drawn like a min. point.
(b)	$y = \frac{1}{x+1} \xrightarrow{A} y = \frac{1}{-x+1} \xrightarrow{B} y = \frac{1}{-(x+5)+1} = \frac{1}{-(x+4)}$	Working must be shown clearly, step by step. Credit is not given even if your answer is correct, but you skipped step(s).

Question	Solution			Remarks
8(a)	$\pi r^2 + 2\pi rh + \pi r(10) = 100\pi$			Use info given
	$100-10r-r^2$			by the question.
	$h = \frac{2r}{2r}$			
	$V = \frac{1}{3}\pi r^{2}h + \pi r^{2}h = \frac{4}{3}\pi r^{2} \left(\frac{100}{3} + \frac{100}{3} + \frac{100}{3}\right)$	$\frac{-r^2-10r}{2r}\right)$		Simplify the expression for V will make the differentiation
	$V = -\frac{\pi}{3} (100r - r - 10r)$			much simpler.
	$\frac{dV}{dr} = \frac{2}{3}\pi \left(100 - 3r^2 - 20r\right) = 0$			No need to apply product or quotient rule
	$-3r^2 - 20r + 100 = 0$			quotient rule.
	$\left(-3r+10\right)\left(r+10\right)=0$			Qn needs
	or			"exact" answer.
	$r = \frac{20 \pm \sqrt{400 + 4(3)(100)}}{2(-3)} = \frac{20 \pm 20}{-3}$	$\frac{40}{6} = -10(\text{NA}), \frac{1}{6}$	$\frac{0}{3}$	show working for finding r either by the
	Either 2 nd derivative test:			quadratic
	$\frac{d^2 V}{dr^2} = \frac{2}{3}\pi \left(-6r - 20\right) < 0 \text{ since } r$	>0		formula for factorisation.
	or			max V.
	$\frac{d^2 V}{dr^2} = \frac{2}{3}\pi \left(-6\left(\frac{10}{3}\right) - 20\right) = -\frac{80}{3}$	$\frac{1}{2}\pi < 0$ when $r = \frac{1}{2}$	$\frac{0}{3}$	If using 2 nd derivative test,
	Or 1 st derivative test			in 10/3 to show
	r 3	$\frac{10}{3}$	4	that $\frac{\mathrm{d}^2 V}{\mathrm{d}r^2} < 0$
	dV 27.2	0	-58.6	or explain that when $r > 0$
	dr			d^2V
	tangent /	-		$\frac{1}{\mathrm{d}r^2} < 0$
	V is max when $r = \frac{10}{3}$			When using the 1 st derivative
	$V = \frac{2}{3}\pi \left(\frac{10}{3}\right) \left(100 - \frac{100}{9} - \frac{100}{3}\right)$	$=\frac{10000\pi}{81}$ or 123	$\frac{37}{81}\pi$	test, numerical values of $\frac{dV}{dr}$
				should be given.
				Not just the sign + /-

Question	Solution	Remarks
8(b)	Volume of Cone $V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi r^2 (2r) = \frac{2}{3}\pi r^3 \Rightarrow \frac{dV}{dr} = 2\pi r^2$ Base area $A = \pi r^2 \Rightarrow \frac{dA}{dr} = 2\pi r$	(b) is not related to (a), we only consider a cone.
	$\frac{dV}{dt} = \frac{dV}{dr}\frac{dr}{dt} = (2\pi r^2)\frac{dr}{dt}$ $15 = 2\pi (3)^2 \frac{dr}{dt}$	Note where the " π " is placed. $\frac{5}{6\pi}$, not $\frac{5}{6}\pi$
	$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{5}{6\pi}$ $\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}r}\frac{\mathrm{d}r}{\mathrm{d}t} = (2\pi r)\frac{\mathrm{d}r}{\mathrm{d}t} = (2\pi)(3)\left(\frac{5}{6\pi}\right) = 5 \mathrm{~cm}^2 \mathrm{~min}^{-1}$	Note units of rate of change of area is $\frac{\text{cm}^2}{\text{min}}$
	Alternatively, $\frac{dA}{dt} = \frac{dA}{dr} \frac{dr}{dV} \frac{dV}{dt} = (2\pi r) \left(\frac{1}{2\pi r^2}\right) (15) = 5 \text{cm}^2 \text{ min}^{-1}$	
9(i)	$\overrightarrow{PQ} = \begin{pmatrix} 4\\2\\-1 \end{pmatrix} - \begin{pmatrix} 1\\1\\2 \end{pmatrix} = \begin{pmatrix} 3\\1\\-3 \end{pmatrix}$	
	The length of projection $\begin{pmatrix} 3 \\ 1 \end{pmatrix}$	Not scalar product formula
	$\frac{\begin{vmatrix} 1 \\ -3 \end{vmatrix} \times \begin{vmatrix} 1 \\ 1 \end{vmatrix}}{\sqrt{3}}$	Modulus is to be seen
	$= = \frac{1}{\sqrt{3}} \begin{vmatrix} 4 \\ -6 \\ 2 \end{vmatrix}$	
	$=\sqrt{\frac{56}{3}} = 2\sqrt{\frac{14}{3}} = \frac{2}{3}\sqrt{42}$	

Question	Solution	Remarks
9(ii)	Let <i>M</i> be the point of intersection.	
	$\overline{OM} = \begin{pmatrix} 1\\1\\2 \end{pmatrix} + \lambda \begin{pmatrix} 3\\1\\-3 \end{pmatrix} \text{ for some } \lambda$	Note notation for vector
	$\overrightarrow{OM} \bullet \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 3 \Rightarrow \begin{pmatrix} 1+3\lambda \\ 1+\lambda \\ 2-3\lambda \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 3$	
	$\overrightarrow{OM} = \begin{pmatrix} 1\\1\\2 \end{pmatrix} + (-1) \begin{pmatrix} 3\\1\\-3 \end{pmatrix} = \begin{pmatrix} -2\\0\\5 \end{pmatrix}$	
(iii)	Use normal vector $\begin{pmatrix} 1\\0\\0 \end{pmatrix}$	Note the normal vector of y-z plane
	$\mathbf{r} \bullet \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 4 \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = -2$	
	x = -2	Cartesian equation asked
(iv)	$ \begin{array}{c} \begin{pmatrix} a \\ 7 \\ b \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 3 \Longrightarrow a + 7 + b = 3 $ $ \begin{array}{c} (a) & (1) \end{array} $	Position vector of a point lying on plane satisfies the equation of plane
	$ \begin{vmatrix} 7 \\ b \end{vmatrix} \bullet \begin{vmatrix} 0 \\ 0 \end{vmatrix} = -2 \Longrightarrow a = -2 $ $\therefore b = -2 $	

Question	Solution	Remarks
9(v)	Direction vector of line of intersection	Find direction
	$\begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$	intersection of
	$= \begin{vmatrix} 1 \\ 1 \end{vmatrix} \times \begin{vmatrix} 0 \\ 0 \end{vmatrix} = \begin{vmatrix} 1 \\ 1 \end{vmatrix}$	planes
	(1) (0) (-1)	
	Vector equation required is	
	(-2) (0)	
	$\mathbf{r} = \begin{bmatrix} 7 \\ +\mu \end{bmatrix} 1 , \ \mu \in \mathbb{R}$	
	$\begin{pmatrix} -2 \end{pmatrix}$ $\begin{pmatrix} -1 \end{pmatrix}$	
	Alternatively,	Use GC to solve
	Solve $x + y + z = 3$ and $x = -2$.	the Cartesian
	Using GC,	equations
	$\begin{pmatrix} -2 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix}$	
	Obtain $\mathbf{r} = \begin{bmatrix} 5 \\ -2 \end{bmatrix} + \mu \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $\mu \in \mathbb{R}$	
	$\begin{pmatrix} 0 \end{pmatrix}$ $\begin{pmatrix} -1 \end{pmatrix}$	
10(a)	$\int c \sin^{-1} x$	Use of
	$\int \frac{c}{\sqrt{1-x^2}} dx$	recognised form
	$\int \sqrt{1-\lambda}$	
	$=e^{\sin^{-1}x} + c \text{ since } \frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}$	
(b)	$x^2 - 6x + 1$	Can use
	$f(x) = \frac{1}{(3x+1)(x^2+3)}$	compare
	A = Br + C	method, or
	$=\frac{A}{3x+1}+\frac{Bx+C}{x^2+3}$	substituting
	$A(r^2+2)+(Pr+C)(3r+1)$	appropriate values or
	$=\frac{A(x+3)+(Bx+C)(3x+1)}{(2x+1)(2x+2)}$	rearrangement
	(3x+1)(x+3)	of terms.
	$x^{2} - 6x + 1 = Ax^{2} + 3A + 3Bx^{2} + 3Cx + Bx + C$	
	$= (A+3B)x^{2} + (3C+B)x + 3A + C$	
	Comparing coefficients,	
	A + 3B = 1	
	$B + 3C = \Box - 6$	
	3A + C = 1	
	From GC, $A = 1$, $B = 0$, $C = -2$	
	$\therefore f(x) = \frac{x^2 - 6x + 1}{(x - 1)^2 - (x - 1)^2} = \frac{1}{(x - 1)^2} - \frac{2}{(x - 1)^2}$	
	$(3x+1)(x^2+3)$ $(3x+1)$ (x^2+3)	

	Alternatively	
	$f(x) = \frac{x^2 - 6x + 1}{(3x + 1)(x^2 + 3)} = \frac{x^2 + 3 - 6x - 2}{(3x + 1)(x^2 + 3)}$	
	$=\frac{1}{3x+1} - \frac{2(3x+1)}{x^2+3} = \frac{1}{3x+1} - \frac{2}{x^2+3}$	
	So $A = 1$, $B = 0$, $C = -2$	
	Alternatively	
	$A(x^{2}+3)+(Bx+C)(3x+1) = x^{2}-6x+1$	
	$x = -\frac{1}{3} \colon A\left(\frac{28}{9}\right) = \frac{1}{9} + 2 + 1 = \frac{28}{9} \Longrightarrow A = 1$	
	$x = 0: 3 + C = 1 \Longrightarrow C = -2$	
	$x = 1: 4 + (B - 2)(4) = -4 \Longrightarrow B = 0$	
	$\int f(x) dx = \int \left[\frac{1}{2} - \frac{2}{2} \right] dx$	
	$\int [x^2 + 3] dx = \int [3x + 1 + x^2 + 3] dx$	Modulus must
	$= \frac{1}{3} \ln 3x+1 - \frac{2}{\sqrt{3}} \tan^{-1} \frac{x}{\sqrt{3}} + c$	be included in the ln
(c)	2π ()	Use of double
(0)	$\int_{\pi} \sin^2 \left(\frac{x}{8}\right) dx$	angle formula $\cos 2A = 1$
	$= \int_{\pi}^{2\pi} \frac{1}{2} \left[1 - \cos\left(\frac{x}{4}\right) \right] dx$	$2\sin^2 A$ = 1 = $2\sin^2 A$ Use of special angle to find
	$= \left[\frac{1}{2}x - 2\sin\left(\frac{x}{4}\right)\right]_{\pi}^{2\pi}$	exact value.
	$=\frac{\pi}{2}-2+\sqrt{2}$	