

H2 Mathematics (9758) Chapter 6B 3D Vector Geometry Assignment 2 (Lines & Planes) Solutions

1 2018/MJC Promo/I/7

The line l and plane Π_1 have equations

$$\mathbf{r} = \begin{pmatrix} 2\\1\\-1 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-3\\1 \end{pmatrix}, \quad \lambda \in \mathbb{R} \quad \text{and} \quad x - 2y + 5z = -1$$

respectively.

- (i) Find the acute angle between l and Π_1 . [2]
- (ii) Find the coordinates of P, the point of intersection of l and Π_1 . [3]
- (iii) Find the shortest distance from point (2,1,-1) to Π_1 . [3]

The plane Π_2 has equation

$$x + ky + 2z = 1,$$

where k is a real constant.

(iv) Give a reason why Π_1 and Π_2 intersect in a line. [1]

- (v) Given that *L* is the line where Π_1 and Π_2 meet, explain why point *P* lies on *L*. Hence or otherwise, find in terms of *k*, a vector equation of *L*. [4]
- (vi) The plane Π_3 has equation x + 2y + 3z = 4. Find the equation of the line of intersection between Π_1 and Π_3 . [1]

1	Solu	tion
(i)	Let θ be the acute angle between l and Π	1.
	$\sin \theta = \frac{\begin{vmatrix} 1 \\ -3 \\ 1 \end{vmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ 5 \end{vmatrix}}{\begin{vmatrix} 1 \\ -3 \\ 1 \end{vmatrix} \begin{vmatrix} 1 \\ -2 \\ 5 \end{vmatrix}}$ $= \frac{12}{\sqrt{12}\sqrt{12}}$	
	$\sqrt{11}\sqrt{30}$ $\theta = 41.344^\circ = 41.3^\circ (1 \text{ d n})$ or 0.722 rad	(3 s f)
(ii)	$\overline{OP} = \begin{pmatrix} 1 \\ -2 \\ 5 \end{pmatrix} = -1$ $\overline{OP} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix} = \begin{pmatrix} 2+\lambda \\ 1-3\lambda \\ -1+\lambda \end{pmatrix} \text{ for some } \lambda$ $\overline{OP} \cdot \begin{pmatrix} 1 \\ -2 \\ 5 \end{pmatrix} = -1$ $\begin{pmatrix} 2+\lambda \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2+\lambda \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	$\lambda \in \mathbb{R}$. To find point of intersection between line and plane, substitute the equation of the line into the equation of plane
	$\begin{vmatrix} 1-3\lambda \\ -1+\lambda \end{vmatrix} \cdot \begin{vmatrix} -2 \\ 5 \end{vmatrix} = -1$ $2+\lambda-2+6\lambda-5+5\lambda = -1$ $12\lambda = 4$ $\lambda = \frac{1}{3}$	
	$\overrightarrow{OP} = \begin{pmatrix} \frac{7}{3} \\ 0 \\ -\frac{2}{3} \end{pmatrix}$ $P\left(\frac{7}{3}, 0, -\frac{2}{3}\right)$	
(iii)	$\overrightarrow{AP} = \begin{pmatrix} \frac{7}{3} \\ 0 \\ -\frac{2}{3} \end{pmatrix} - \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} \frac{1}{3} \\ -1 \\ \frac{1}{3} \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix}$	

	Since <i>P</i> satisfies the equation of Π_2 , it lies on Π_2 .
	Since P lies on Π_1 and Π_2 , it will lie on L.
	$\Pi_1: \mathbf{r} \bullet \begin{pmatrix} 1 \\ -2 \\ 5 \end{pmatrix} = -1 \qquad \qquad \Pi_2: \mathbf{r} \bullet \begin{pmatrix} 1 \\ k \\ 2 \end{pmatrix} = 1$
	$\mathbf{n}_1 \times \mathbf{n}_2 = \begin{pmatrix} 1 \\ -2 \\ 5 \end{pmatrix} \times \begin{pmatrix} 1 \\ k \\ 2 \end{pmatrix}$
	$ = \begin{pmatrix} -4 - 5k \\ 3 \\ k + 2 \end{pmatrix} $
	$L: \mathbf{r} = \frac{1}{3} \begin{pmatrix} 7\\0\\-2 \end{pmatrix} + \mu \begin{pmatrix} -4-5k\\3\\k+2 \end{pmatrix}, \ \mu \in \mathbb{R}$
(vi)	Using GC, the equation of the line of intersection between Π_1 and Π_3 is
	$\mathbf{r} = \begin{pmatrix} \frac{3}{2} \\ \frac{5}{4} \\ 0 \end{pmatrix} + \gamma \begin{pmatrix} -4 \\ \frac{1}{2} \\ 1 \end{pmatrix}, \ \gamma \in \mathbb{R} .$

[2]

[3]

2 2018/DHS Prelim/I/9

The line l_1 passes through the point A with the position vector $\begin{pmatrix} 1\\ 3\\ 2 \end{pmatrix}$ and is parallel to

 $\begin{pmatrix} t \\ t^2 + 1 \\ 3 \end{pmatrix}$, while the cartesian equation of the plane *p* is given by tx - 2y + z = -3, where *t* is

a real constant. It is known that l_1 and p have no point in common.

- (i) Show that t = -1. [3]
- (ii) Find the distance between l_1 and p.
- (iii) The line l_2 has the cartesian equation 2y = z, x = 3. Show that l_2 lies on p. [2]
- (iv) Given that point *B* and point *C* lie on l_1 and l_2 respectively, find \overline{BC} such that it is perpendicular to both l_1 and l_2 . [3]

(v) Find the vector equation of the line of reflection of l_1 in p.

2	Solution	
(i)	$l_1: \mathbf{r} = \begin{pmatrix} 1\\3\\2 \end{pmatrix} + \lambda \begin{pmatrix} t\\t^2 + 1\\3 \end{pmatrix}, \ \lambda \in \mathbb{R}$	
	$p:tx-2y+z=-3 \implies \mathbf{r} \cdot \begin{pmatrix} t \\ -2 \\ 1 \end{pmatrix} = -3$ Since l_1 and p have common, l_1 is paral	no point in lel to <i>p</i>
	Since l_1 and p have no point in common, the direction vector of l_1 is prevented vector of p and the point A does not lie on p .	perpendicular to normal
	$\begin{pmatrix} t \\ t^2 + 1 \\ 3 \end{pmatrix} \begin{pmatrix} t \\ -2 \\ 1 \end{pmatrix} = 0 \implies t^2 - 2t^2 - 2 + 3 = 0 \implies t = -1 \text{ or } 1$	
	$ \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} \begin{pmatrix} t \\ -2 \\ 1 \end{pmatrix} \neq -3 \implies t - 6 + 2 \neq -3 \implies t \neq 1 $	
	Therefore, $t = -1$ (shown)	

$$h: 2y = z, x = 3, \Rightarrow \mathbf{r} = \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, \mu \in \mathbb{R} \longrightarrow (1)$$

$$p: -x - 2y + z = -3 \Rightarrow \mathbf{r} \cdot \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix} = -3 - (2)$$
Substitute (1) into (2)
$$\begin{bmatrix} \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \end{bmatrix}, \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix} = -3 - 2y + 2y = -3 = \text{RHS of } p$$
Therefore, *l*; lies on *p* (shown).
(iv)
$$\frac{\text{Method I}}{OB} = \begin{pmatrix} 1 - \lambda \\ 3 + 2\lambda \\ 2 + 3\lambda \end{pmatrix}, \text{ for some } \lambda \in \mathbb{R}$$

$$\overline{OC} = \begin{pmatrix} 3 \\ \mu \\ 2\mu \end{pmatrix}, \text{ for some } \mu \in \mathbb{R}$$

$$\overline{BC} = \begin{pmatrix} 3 \\ \mu \\ 2\mu \end{pmatrix}, \text{ for some } \mu \in \mathbb{R}$$

$$\overline{BC} \cdot \mathbf{d}_1 = 0 \text{ and } \overline{BC} \cdot \mathbf{d}_2 = 0$$

$$\begin{pmatrix} 2 + \lambda \\ \mu - 3 - 2\lambda \\ 2\mu - 2 - 3\lambda \end{pmatrix}, \frac{(-1)}{2} = 0 \text{ and } \begin{pmatrix} 2 + \lambda \\ \mu - 3 - 2\lambda \\ 2\mu - 2 - 3\lambda \end{pmatrix}, \frac{(0)}{2} = 0$$

$$\int \frac{2 + \lambda}{(2\mu - 2 - 3\lambda)} \cdot \begin{pmatrix} 0 \\ 2 \\ \mu - 3 - 2\lambda \\ 2\mu - 2 - 3\lambda \end{pmatrix}, \frac{(-1)}{2} = 0 \text{ and } \begin{pmatrix} 2 + \lambda \\ \mu - 3 - 2\lambda \\ 2\mu - 2 - 3\lambda \end{pmatrix}, \frac{(0)}{2} = 0$$

$$7\lambda - 4\mu = -7 \cdots (1) \qquad 8\lambda - 5\mu = -7 \cdots (2)$$
Solve (1) and (2): $\mu = -\frac{7}{3}$ and $\lambda = -\frac{7}{3}$

$$\overline{OB} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} + \begin{pmatrix} -\frac{7}{3} \end{pmatrix} \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 10/3 \\ -5/3 \\ -5 \end{pmatrix} \text{ and } \overline{OC} = \begin{pmatrix} 3 \\ \mu \\ 2\mu \end{pmatrix} = \begin{pmatrix} 3 \\ -\frac{7}{3} \\ -\frac{7}{3} \\ -\frac{14}{3} \end{pmatrix}$$

$$\overline{BC} = \overline{OC} - \overline{OB} = \begin{pmatrix} 3 \\ -\frac{7}{3} \\ -\frac{7}{3} \\ -\frac{7}{3} \\ -\frac{7}{3} \\ -\frac{5}{3} \\ -\frac{1}{3} \\ -\frac{1}$$

	$ \frac{\text{Method } 2}{\mathbf{d}_{1} \times \mathbf{d}_{2} = \begin{pmatrix} 1 \\ -2 \\ -3 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}} $ $ \frac{\text{Note: Since } \overrightarrow{BC} \text{ is perpendicular to } l_{1}}{\text{and } l_{2}, \overrightarrow{BC} \text{ is parallel to } \mathbf{d}_{1} \times \mathbf{d}_{2}} $
	$\overline{BC} = \begin{pmatrix} \mu - 3 - 2\lambda \\ 2\mu - 2 - 3\lambda \end{pmatrix} = \begin{pmatrix} \mu - 3 - 2\lambda \\ 2\mu - 2 - 3\lambda \end{pmatrix} = \beta \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ Solving the equation, $\beta = \frac{1}{2}, \mu = \lambda = -\frac{7}{2}$
	Hence $\overline{BC} = \frac{1}{3} \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}$.
(v)	Method 1 Let l_1 be the line of reflection of l_1 in p . Let point B' be the point lying on l_1 and is also the reflection of B in p .
	$\mathbf{d}_{l_1} = \mathbf{d}_{l_1} = \begin{pmatrix} -1\\ 2\\ 3 \end{pmatrix} \text{ because } l_1 \text{ is parallel to } p.$ B
	$BB = 2BC \implies OB = 2BC + OB$ $= 2\left[\frac{1}{3}\begin{pmatrix}-1\\-2\\1\end{pmatrix}\right] + \begin{pmatrix}\frac{10/3}{3}\\-\frac{5/3}{3}\\-5\end{pmatrix}$ $\frac{p}{l_2} \qquad C$ l_1'
	$= \begin{pmatrix} \frac{8}{3} \\ -3 \\ -\frac{13}{3} \end{pmatrix}$
	Equation of line of reflection $l_1': \mathbf{r} = \begin{pmatrix} \frac{8}{3} \\ -3 \\ -\frac{13}{3} \end{pmatrix} + \gamma \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}, \ \gamma \in \mathbb{R}$

Method 2

3 2018(9758)/II/3

An oblique pyramid has a plane base *ABCD* in the shape of a parallelogram. The coordinates of *A*, *B* and *C* are (5, -4, 1), (5, 4, 0) and (-5, 4, 2) respectively. The apex of the pyramid is at *E* (0, 0, 10) (see diagram).

- (i) Find the coordinates of *D*. [1]
- (ii) Find the cartesian equation of face *BCE*. [3]
- (iii) Find the angle between face *BCE* and the base of the pyramid. [3]
- (iv) Find the shortest distance from the midpoint of edge *AD* to face *BCE*. [5]

(ii)	(0) (5) (-5)
	$\overrightarrow{BE} = \overrightarrow{OE} - \overrightarrow{OB} = \begin{bmatrix} 0\\0\\10 \end{bmatrix} - \begin{bmatrix} 4\\0 \end{bmatrix} = \begin{bmatrix} -4\\10 \end{bmatrix}$
	$\overrightarrow{BC} = \overrightarrow{OC} - \overrightarrow{OB} = \begin{pmatrix} -5\\4\\2 \end{pmatrix} - \begin{pmatrix} 5\\4\\0 \end{pmatrix} = \begin{pmatrix} -10\\0\\2 \end{pmatrix}$
	$\overrightarrow{BE} \times \overrightarrow{BC} = \begin{pmatrix} -5 \\ -4 \\ 10 \end{pmatrix} \times \begin{pmatrix} -10 \\ 0 \\ 2 \end{pmatrix}$ To get the normal vector of the place <i>BCE</i> , we cross 2 non-parallel vectors (\overrightarrow{BE} and \overrightarrow{BC}) that are parallel to the plane.
	$= \begin{pmatrix} -90\\ -40 \end{pmatrix} = -2 \begin{pmatrix} 45\\ 20 \end{pmatrix}$
	$\mathbf{r} \cdot \begin{pmatrix} 4\\45\\20 \end{pmatrix} = \begin{pmatrix} 4\\45\\20 \end{pmatrix} \cdot \begin{pmatrix} 0\\0\\10 \end{pmatrix}$ $= 200$
	$ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \begin{pmatrix} 4 \\ 45 \\ 20 \end{pmatrix} = 200 $ Answer the question. Give your answer in Cartesian form .
	4x + 45y + 20z = 200
(iii)	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} 5\\4\\0 \end{pmatrix} - \begin{pmatrix} 5\\-4\\1 \end{pmatrix} = \begin{pmatrix} 0\\8\\-1 \end{pmatrix}$
	$\overrightarrow{AB} \times \overrightarrow{BC} = \begin{pmatrix} 0\\ 8\\ -1 \end{pmatrix} \times \begin{pmatrix} -10\\ 0\\ 2 \end{pmatrix}$ To get the normal vector of the place <i>ABCD</i> , we cross 2 non-parallel vectors (\overrightarrow{AB} and \overrightarrow{BC}) that are parallel to the plane.
	$= \begin{bmatrix} 10\\10\\80 \end{bmatrix} = 2\begin{bmatrix} 5\\40 \end{bmatrix}$ For acute angle (for between 2 planes, 2 lines, or a line and a
	Required angle = $\cos^{-1} \frac{\begin{vmatrix} 0 \\ 40 \end{vmatrix}}{\sqrt{1600}} \sqrt{2141}$
	$= 58.6^{\circ} (1 \text{ d.p.})$ Always give 1 decimal place for angles in degree unless exact or specified otherwise by question.

