RVHS 2024 H2 Math Prelim P1

- 1 The curve *C* has equation $y = x^3 + x$. It undergoes the transformations in the following order: Translation by 2 units in the negative *y*-direction, followed by scaling parallel to the *x*-axis with scale factor $\frac{1}{2}$, followed by reflection about the *x*-axis.
 - (a) Determine the equation of the resulting curve. [4]
 (b) Find the coordinates of the point of intersection between the two curves. [1]

2 (a) Solve the inequality
$$\frac{3x-4x^2}{2x+1} \ge 0$$
 by algebraic method. [3]

(b) Hence solve the inequality
$$\frac{4|x|^2 - 3|x|}{2|x| + 1} \le 0$$
. [3]

3 It is given that $y = (1+x)^x$.

(a) By considering
$$\ln y$$
, find $\frac{dy}{dx}$ in terms of x. [4]

(b) Find
$$\frac{dw}{dx}$$
 in terms of x if $w = (1+x)^x + (1+2x)^{2x}$. [3]

The origin *O* and regular octagon *OACDEFGB* lie in the same plane, where $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$ (see diagram).

(a) Explain why \overrightarrow{BG} can be expressed as $\overrightarrow{BG} = s\mathbf{a} + t\mathbf{b}$ for real constants s and t. [2]

It is given that angle AOB = angle OBG = 135°.

- (b) It is known that line *BG* is perpendicular to line *OA*. By considering the scalar product $\overrightarrow{BG} \cdot \overrightarrow{OA}$, show that $t = \sqrt{2}s$. [3]
- (c) By considering a suitable scalar product, or otherwise, deduce the values of s and t. [3]

5 Do not use a calculator in answering this question.

(a) The complex number z is given by

$$z = \frac{\left(-\sqrt{3} - i\right)^5}{\cos\left(\frac{1}{7}\pi\right) - i\sin\left(\frac{1}{7}\pi\right)}.$$
[4]

Find |z| and $\arg(z)$.

- (b) (i) The roots of the equation $w^2 = 4i$ are w_1 and w_2 . Find w_1 and w_2 in cartesian form x+iy, showing your working. [3]
 - (ii) Hence, or otherwise, find in exact cartesian form the roots v_1 and v_2 of the equation

$$v^2 - 10v + (25 - i) = 0.$$
 [3]

(a) Show that
$$\ln(2^{r-1}\sin 2\theta) - \ln(2^r\sin \theta) = \ln(\cos \theta)$$
. [2]

(**b**) By letting
$$\theta = \frac{1}{2^r}$$
, find $\sum_{r=1}^n \ln\left(\cos\left(\frac{1}{2^r}\right)\right)$ in terms of *n*. [3]

(c) Hence, show that
$$\sum_{r=1}^{\infty} \ln\left(\cos\left(\frac{1}{2^r}\right)\right)$$
 converges and state its value.

6

(You may assume that
$$2^n \sin\left(\frac{1}{2^n}\right) \to 1$$
 as $n \to \infty$.) [2]

©RIVER VALLEY HIGH SCHOOL

- 7 (a) Given that $y^3 = e^{ax} \cos x$, where *a* is a constant, show that $3y^2 \frac{dy}{dx} ay^3 = -e^{ax} \sin x$. [2]
 - (b) By further differentiation of this result, find the Maclaurin series for y, up to and including the term in x^2 . [5]
 - (c) Given that the first three non-zero terms in the above Maclaurin series are equal to the first three non-zero terms in the series expansion of e^{x+bx^2} , where b is a constant, find the values of a and b. [3]

8 There are two identical tanks, each of capacity 90 000 m³. Robots A and B are each programmed to fill up an empty tank with water at the end of each day.

Robot A fills the tank with 6000 m^3 of water on the first day. For each subsequent day, Robot A fills the tank with 50 m^3 of water lesser than the previous day.

Robot B fills the tank with 9000 m^3 of water on the first day. For each subsequent day, Robot B fills the tank with 85% of the volume of water it fills the tank in the previous day.

- (a) Find the number of days for robot A to fill up the tank.
- (b) Determine with clear reasoning whether robot B would be able to fill up the tank with water. [1]

[3]

- (c) Find the total amount of water that robot B fills in the tank by the end of the 10^{th} day.
- (d) At the start of the 11th day, robot B is reprogrammed. At the end of the 11th day, it fills the tank with 5% more volume of water it fills on the previous day and continues to do so for each subsequent day.

Show that the total volume of water, in m³, that Robot B fills in the tank after reprogramming can be expressed as

$$189000(0.85)^{9}(1.05^{n}-1),$$

where *n* is the number of days starting from the 11^{th} day. Hence, determine with clear reasoning which robot will be faster in filling up the tank with the above change. [5] 9 The closed curve C, which is symmetrical about the line x = 0, has parametric equations $x = \cos 3t + \cos t$, $y = -2\cos 2t$,

for
$$\frac{\pi}{4} \le t \le \frac{3\pi}{4}$$
.
(a) Sketch C. [1]

(b) Find the exact equation of the tangent of *C* at the point when $t = \frac{\pi}{4}$. [3]

(c) Find the acute angle between the two tangents of curve C at $t = \frac{\pi}{4}$ and $t = \frac{3\pi}{4}$. [2]

(d) Show that the area enclosed by the curve C is given by

$$\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} 3\sin 5t + \sin 3t + 2\sin t \, \mathrm{d}t \, .$$

Hence find the area enclosed by the curve *C* correct to 3 decimal places. [4]

10 In a robotics competition, toy cars move along straight lines to complete tasks. Points are defined relative to the origin (0,0,0). The *x*-, *y*- and *z*-axes are in the directions east, north and vertically upwards respectively, with units in centimetres.

The position vectors of two toy cars A and B, with respect to time t in seconds, are given as $\mathbf{r}_{A} = t(5\mathbf{i} + \mathbf{k})$ and $\mathbf{r}_{B} = \mathbf{i} + 6\mathbf{j} - \mathbf{k} + t(4\mathbf{i} - \mathbf{j} + \mathbf{k})$ respectively.

- (a) Show that after two seconds, car B is at the point with coordinates (9,4,1) and find the distance that car A has travelled in the same duration.
- (b) Determine whether cars A and B meet. [3]
- (c) Explain why cars A and B travel on a common plane surface and show that the cartesian equation of the surface is x y 5z = 0. [5]

A drone flies above the cars to capture images of the cars during the competition. The shortest distance between the drone and the surface where cars A and B travel is maintained at 50 cm.

(d) Find the cartesian equation of the plane containing the flight path of the drone. [2]

11 An experiment was conducted at room temperature, where the levels of the concentration of a chemical is investigated over time. The initial concentration of the chemical was x_0 mol/dm³. A possible model suggests that the

rate at which the concentration decreases is directly proportional to x^2 , where x mol/dm³ is the concentration of the chemical at time t minutes after the start of the experiment.

- (a) (i) By setting up and solving a differential equation, show that the time taken for the concentration of the chemical to reach $\frac{x_0}{2}$ is inversely proportional to x_0 . [4]
 - (ii) It was observed that it took 4 min and 16 min to reach one-half and one-quarter of x_0 respectively. Explain why the above model is not suitable. [2]

For the rest of the question, take $x_0 = \frac{3}{2}$.

It was later discovered that the concentration of the chemical can be modelled in an alternative way. Due to a reversible reaction, the rate at which the concentration of the chemical increases is directly proportional to $\left(\frac{3}{2} - x\right)^2$ while the rate at which it decreases is directly proportional to x^2 .

It is given that there is no change in the concentration when the concentration is $\frac{1}{2}$ mol/dm³.

(b) (i) For this model, show that
$$\frac{dx}{dt} = -k(4x^2 + 4x - 3)$$
, where k is a positive real constant.

(ii) Solve this differential equation to find x in terms of t and k. [5]

RVHS 2024 H2 Math Prelim P2

Section A: Pure Mathematics [40 marks]

- 1 (a) Find $\int \ln x \, dx$. [2]
 - (b) The region A is bounded by the curve $y = \frac{1}{2}\sqrt{\ln x}$, x-axis and the line x = 5. Find the exact volume when A is rotated 2π radians about the x-axis. [3]

2 Functions f and g are defined by

f:
$$x \mapsto x + e^x$$
, for $x \in \mathbb{R}, x > -2$,
g: $x \mapsto \ln x$ for $x \in \mathbb{R}, x > \frac{1}{e}$.

- (a) Show that f has an inverse. [1]
 (b) Show that the composite function fg exist and find fg(x). [3]
- (c) Hence find the value of x which satisfies $g(x) = f^{-1}(x)$. [3]

9758/02/2024

A function f is defined by $f(x) = ax + b + \frac{c}{x-1}$, where a, b and c are constants. The graph of y = f(x) has a minimum point at (2.5,13) and also passes through the y-axis at (0,-12).

- (a) Find the values of a, b and c. [4]
- (b) Sketch the graph of y = f(x), stating clearly any asymptotes, axial intercepts and turning points. [3]

The diagram shows a square *PQRS* of side *p* metres. The points *X* and *Y* lie on *PQ* and *QR* respectively such that PX = x m and QY = qx m, where *q* is a constant such that q > 1.

- (a) Given that the area of triangle XYS is $A m^2$, show that $A = \frac{1}{2}(qx^2 px + p^2)$. [3]
- (b) Given that x can vary, show that QY = YR when A is minimum and express the minimum value of A in terms of p and q. [6]

4

5 Do not use a calculator in answering this question.

Let P(z) be a polynomial with real coefficients and $z = re^{i\theta}$ is one the roots of the equation P(z) = 0.

- (a) Show that $z^2 (2r\cos\theta)z + r^2$ is a quadratic factor of P(z). [3]
- (b) Given that $z^4 z^3 + z^2 z + 1 = (z^2 az + 1)(z^2 bz + 1)$, for real values *a* and *b*, and that b < 0 < a, find exact values for *a* and *b*. [4]

(c) By considering
$$1+z^5$$
, verify that $z = e^{i\frac{\pi}{5}}$ is a root to the equation $z^4 - z^3 + z^2 - z + 1 = 0$.
[2]

(d) Show that
$$\cos\left(\frac{\pi}{5}\right) = \frac{1+\sqrt{5}}{4}$$
. [3]

Section B: Statistics [60 marks]

6 The number 396900 can be expressed as $2^2 \times 3^4 \times 5^2 \times 7^2$.

A factor of 396900 can be expressed in the form $2^a \times 3^b \times 5^c \times 7^d$ for non-negative integers *a*, *b*, *c* and *d*. For example, 3150 and 140 are factors of 396900 and they can be expressed as $2^1 \times 3^2 \times 5^2 \times 7^1$ and $2^2 \times 3^0 \times 5 \times 7$ respectively.

[1]

[1]

- (a) State all the possible values for *a*.
- (b) Find the number of factors of 396900.

A factor of 396900 is chosen randomly.

(c) Find the probability that the chosen factor is divisible by 3 given that it is even. [3]

- 7 Company A consists of 15 men and 10 women on its staff. 10 staff are to be selected to join a contest as Team A. The random variable *R* denotes the number of men in Team A.
 - (a) Show that

$$E(R) = \sum_{r=0}^{10} \left[r \times \frac{\binom{15}{r} \binom{m}{10-r}}{n} \right], \text{ for } r = 0, 1, 2, ..., 10,$$

[3]

[3]

where *m* and *n* are real constants to be determined.

(b) Use your calculator to find E(R) and Var(R).

Company B also consists of male and female staff where 10 staff are to be selected to join the same contest as Team B, and Q denotes the number of men in the team. It is known that E(Q) = 6.25 and Var(Q) = 3.

Before both companies finalise their teams, they decide to study the different team configurations further by generating a list of random samples of the teams.

(c) Estimate the probability the mean number of men in 30 random samples of Team A exceeds the mean number of men in 30 random samples of Team B. [4]

- 8 Long standing data indicates that customers of 80% of all table reservations at a restaurant will turn up. For this question, assume that all tables can only be reserved once in a dinner service and customers stay until the end of dinner service.
 - (a) One day, a restaurant has 14 table reservations for dinner service.
 - (i) Find the expectation and variance for the number of table reservations where the customers turn up. [2]
 - (ii) Find the probability that at least 9 table reservations but less than 13 have their customers turn up. [3]
 - (b) Find the probability that, for dinner service on two days with 14 table reservations each, there is a total of exactly 24 table reservations where the customers turn up. [2]
 - (c) A restaurant manager of a 30-table restaurant decides to offer more table reservations than the full capacity. Find the maximum number of table reservations that the manager can offer such that there is a probability of at least 85% that the restaurant will not exceed full capacity for a dinner service. [3]

9 (a) A scientist is studying the growth of water lilies in a large lake. He planted a water lily at one corner and he measures the area, $A \text{ km}^2$, the water lilies cover on day *t*. His results are recorded below:

Time, <i>t</i> (days)	1	4	7	14	20	29
Area, A (km ²)	0.6	1.3	3.7	7.4	8.6	9.2

- (i) Draw a scatter diagram to illustrate the data.
- (ii) The scientist would like to predict the future growth of the water lilies. Using the scatter diagram and the context of the question, state two reasons why, in this context, a linear model is not appropriate. [2]

[1]

[1]

(b) It is proposed to fit the above data with a model of the form $\ln(D-A) = a+bt$, where D is a suitable constant. The product moment correlation coefficient between t and $\ln(D-A)$ is denoted by r. The following table gives values of r for some possible values of D.

D	9.5	9.8	10
r		-0.99359	-0.99114

- (i) Calculate the value of r for D = 9.5, giving your answer correct to 5 decimal places. Hence, explain which of 9.5, 9.8 or 10 is the most appropriate value of D for the model to fit. [2]
- (ii) Using this value of D, calculate the values of a and b correct to 5 decimal places, and use them to predict the area covered by water lilies after 28 days. Comment on whether the estimate is reliable. [4]
- (iii) Give an interpretation, in context, of the value of D.

- 17
- 10 An internet advertising company *TicTakAim* claims that viral video's duration has a mean duration of 30 seconds. An influencer wants to investigate the company's claim as she believes that the company is underestimating the mean duration. However, she is unable to record the durations of all the viral videos.
 - (a) Explain how she could obtain a sample of viral video durations, and why she should obtain the sample in this way. [2]

The influencer takes a sample of 90 viral video's durations. The viral video's durations, x seconds, are summarised as follows.

$$\Sigma(x-30) = 90$$
 $\Sigma(x-30)^2 = 2037$

- (b) Find the unbiased estimates of the population mean and variance of the durations of viral videos. [2]
- (c) Carry out an appropriate test, at the 3% level of significance, whether the company's claim is justifiable. You should state your hypotheses and define any symbols you use. [4]
- (d) Explain, in the context of the question, the meaning of "at the 3% level of significance". [1]
- (e) The influencer was later informed that the population standard deviation of the viral video duration is σ seconds. Find the set of values of σ so that the influencer can conclude that there is sufficient evidence at the 3% level of significance to believe that *TicTakAim* is underestimating the mean duration. [3]

- 11 A leather craftsman customized leather belts according to the widths of the customer's buckles. Over a period of time, it is found that the buckle widths are normally distributed. 60% of the buckles have width more than 25 mm and 15% are less than 24 mm.
 - (a) Find the mean and variance of the buckle width.

[3]

The widths of the leather belts produced by the craftsman follow a normal distribution with mean 25.1 mm and standard deviation 1.4 mm.

(b) Find the probability that the width of a randomly chosen leather belt is between 24 mm and 26 mm. [1]

In order to fit the leather belts nicely into the buckles, the craftsman reduces the widths of these leather belts by 1%.

(c) Find the probability that the total width of 3 randomly chosen leather belts is less than 75.4 mm. [3]

There are holes that are punctured into the leather belts that have diameters, in mm, that follow the distribution $N(4.5, 0.2^2)$.

The prong is part of the belt buckle that is also known as the pin or the "fork". It goes through any of the holes in the belt to secure the belt in place.

The diameter of the prong, in mm, follows the distribution $N(4.3, 0.1^2)$.

If the diameter of a prong is more than 0.2 mm greater than the diameter of a hole, then the hole has to be enlarged to make it fit.

If the diameter of a hole is more than 0.3 mm greater than the diameter of a prong, welding is done to increase the diameter of the prong to make it fit.

- (d) A complete set of a belt is made up of a randomly chosen buckle with a prong and a leather belt with 5 punctured holes. Find the probability that for a belt, the prong can be fitted into every hole without having the holes enlarged or the prong welded. [4]
- (e) A punctured hole on a belt and a buckle with a prong are randomly chosen for inspection. State with a reason whether or not the event that the hole needs to be enlarged and the event that the prong needs to be welded are independent. [2]

Solution and Comments for 2024 H2 Math Prelim P1

1

The curve *C* has equation $y = x^3 + x$. It undergoes the transformations in the following order: Translation by 2 units in the negative *y*-direction, followed by

scaling parallel to the *x*-axis with scale factor $\frac{1}{2}$, followed by

reflection about the *x*-axis.

- (a) Determine the equation of the resulting curve. [4]
- (b) Find the coordinates of the point of intersection between the two curves. [1]

1	Solutions [5] Graphing Transformations.	Comments
(a)	$y = x^3 + x$	Many students were still
	$\downarrow A: y \rightarrow y + 2$	unable to obtain the full credit for this part due to
	$y = x^3 + x - 2$	slips in A: replacing y by
	$\oint \mathbf{B}: x \to 2x$	y-2 and C: replacing x by -x which are incorrect.
	$y = 8x^3 + 2x - 2$	
	$\downarrow C: y \to -y$	(Note: Should students
	$y = -8x^3 - 2x + 2$	correct answer but steps
	The equation of the resulting curve is $y = -8x^3 - 2x + 2$.	in method are incorrect, they will not be awarded any answer mark!)
(b)	Solving $x^3 + x = -8x^3 - 2x + 2$,	Students who got (a)
	$x = 0.429303 \Longrightarrow y = 0.508424$	correct would usually get
	\therefore coordinates of intersection point is (0.429, 0.508).	(b) correct.

2 (a) Solve the inequality
$$\frac{3x-4x^2}{2x+1} \ge 0$$
 by algebraic method. [3]
(b) Hence solve the inequality $\frac{4|x|^2-3|x|}{2|x|+1} \le 0$. [3]

2	Solution [6] Inequalities	Comments
2 (a)	Solution [6] Inequalities For solving $\frac{3x-4x^2}{2x+1} \ge 0$, we first have $\frac{x(3-4x)}{2x+1} \ge 0$. Then using number line testing method: $\frac{-1}{-\frac{1}{2}} + \frac{-1}{0} + \frac{-1}{\frac{3}{4}} + \frac{-1}{x}$ Thus the solutions are: $x < -\frac{1}{2}$ or $0 \le x \le \frac{3}{4}$.	Comments While there are few methods in solving this question, students ought to learn what is more efficient in their work so that they can minimise the time spent on the question. There were quite group of students who did long division but could not proceed on. Some common mistakes are: • Wrong calculation of the sign for the number line • Wrong choice of region after multiplying by "- 1" • Simply forgetting that $x \neq -\frac{1}{2}$
(b)	Next for solving $\frac{4 x ^2 - 3 x }{2 x + 1} \le 0$, we note that $\frac{4 x ^2 - 3 x }{2 x + 1} \le 0 \Rightarrow \frac{3 x - 4 x ^2}{2 x + 1} \ge 0$. Thus, we can replace x with $ x $ in the first given inequality $\frac{3x - 4x^2}{2x + 1} \ge 0$. Hence the solution to the 2 nd inequality should be: $ x < -\frac{1}{2}$ (No solution as $ x \ge 0$) or $0 \le x \le \frac{3}{4}$ So, the solution is $-\frac{3}{4} \le x \le \frac{3}{4}$.	Some students saw the replacement of <i>x</i> in part (a) with $ x $ but they did not test out the required region and assumed that part (b) wants the other region as required in part (a). Students must also check on the final answer with several regions in the number line, for example, $0 \le x \le \frac{3}{4}$ or $-\frac{3}{4} \le x \le 0$ would imply $-\frac{3}{4} \le x \le \frac{3}{4}$. A lot of students simply reject $ x < -\frac{1}{2}$ without any

	explanation	which	is	not
	accepted.	Furth	erm	ore,
	some	:	stud	ents
	$ x < -\frac{1}{2} \Longrightarrow x$	$x \in \mathbb{R}$		

3 It is given that $y = (1+x)^x$.

(a) By considering
$$\ln y$$
, find $\frac{dy}{dx}$ in terms of x. [4]

(**b**) Find
$$\frac{dw}{dx}$$
 in terms of x if $w = (1+x)^x + (1+2x)^{2x}$. [3]

3	Solutions [7] Differentiation Techniques	Comments
(a)	$\mathbf{v} = \left(1 + x\right)^x$	Generally well done.
	$\ln y = x \ln (1+x)$ Differentiate both sides wrt x: $\frac{1}{y} \frac{dy}{dx} = \frac{x}{1+x} + \ln (1+x)$ $\frac{dy}{dx} = y \left[\frac{x}{1+x} + \ln (1+x) \right]$ $= (1+x)^{x} \left[\frac{x}{1+x} + \ln (1+x) \right]$ $= x(1+x)^{x-1} + (1+x)^{x} \ln (1+x)$	Except a minority of students who incorrectly included modulus within their workings for (a) and (b) i.e. $\ln y = x \ln (1+x) $ which was unnecessary in this case.
(b)	Consider $v = (1+2x)^{2x}$. From part (i) and chain rule, $\frac{dv}{dx} = \left[2x(1+2x)^{2x-1} + (1+2x)^{2x} \ln(1+2x) \right] \frac{d(2x)}{dx}$ $= 2(1+2x)^{2x} \left[\frac{2x}{1+2x} + \ln(1+2x) \right]$ $= 4x(1+2x)^{2x-1} + 2(1+2x)^{2x} \ln(1+2x).$ $\therefore \text{ For } w = (1+x)^{x} + (1+2x)^{2x},$ $\frac{dw}{dx} = x(1+x)^{x-1} + (1+x)^{x} \ln(1+x)$ $+ 4x(1+2x)^{2x-1} + 2(1+2x)^{2x} \ln(1+2x).$ $\frac{\text{Alternative}}{\log x}$ Let $v = (1+2x)^{2x}$ $v = (1+2x)^{2x}$ $\ln v = 2x \ln(1+2x)$ Differentiate both sides wrt x:	There were many students who did not succeed in this part due to a few common errors: $\frac{\text{First common error:}}{w = (1+x)^{x} + (1+2x)^{2x}}$ implying $\ln w = x \ln (1+x) + 2x \ln (1+2x)$ is NOT TRUE!! Note that $\ln(A+B) \neq \ln A + \ln B$ $\frac{\text{Second common error:}}{dw}{dx} = x(1+x)^{x-1} + 2x(1+2x)^{2x-1}$ is NOT TRUE!! Note that $\frac{d}{dx}(x^{n}) = nx^{n-1} \text{ only if } n \text{ is a}$ constant but here x is not a constant! $\frac{\text{Third common error:}}{\text{When differentiating}}$

$\frac{1}{v}\frac{dv}{dx} = \frac{4x}{1+2x} + 2\ln(1+2x)$ $\frac{dv}{dx} = v\left[\frac{4x}{1+2x} + 2\ln(1+2x)\right]$ $= (1+2x)^{2x}\left[\frac{4x}{1+2x} + 2\ln(1+2x)\right]$	by 2x in (a)'s result, by chain rule there is also a need to differentiate 2x i.e. $2(1+2x)^{2x}\left[\frac{2x}{1+2x}+\ln(1+2x)\right]$ Many students missed out the "2" in their final answer.
$\frac{dw}{dx} = x(1+x)^{x-1} + (1+x)^x \ln(1+x) + (1+2x)^{2x} \left[\frac{4x}{1+2x} + 2\ln(1+2x)\right]$).

The origin *O* and regular octagon *OACDEFGB* lie in the same plane, where $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$ (see diagram).

(a) Explain why \overrightarrow{BG} can be expressed as $\overrightarrow{BG} = s\mathbf{a} + t\mathbf{b}$ for real constants s and t. [2]

It is given that angle AOB = angle OBG = 135°.

- (b) It is known that line *BG* is perpendicular to line *OA*. By considering the scalar product $\overrightarrow{BG} \cdot \overrightarrow{OA}$, show that $t = \sqrt{2}s$. [3]
- (c) By considering a suitable scalar product, or otherwise, deduce the values of s and t. [3]

4	Solution [8] Abstract Vectors	Comments
<u>4</u> (a)	Solution [8] Abstract Vectors Let the plane that contains the pentagon be π . Hence, any point on the plane has the form $\mathbf{r} = \mathbf{b} + s\mathbf{a} + t\mathbf{b}$, for some real parameters <i>s</i> and <i>t</i> . In particular, $\overrightarrow{OG} = \mathbf{b} + s\mathbf{a} + t\mathbf{b}$ for some $s, t \in \mathbb{R}$. $\overrightarrow{OG} = \overrightarrow{OB} + s\mathbf{a} + t\mathbf{b}$ $\overrightarrow{OG} = \overrightarrow{OB} + s\mathbf{a} + t\mathbf{b}$ $\overrightarrow{OG} = \overrightarrow{OB} = s\mathbf{a} + t\mathbf{b}$ $\overrightarrow{BG} = s\mathbf{a} + t\mathbf{b}$, for real constants <i>s</i> , <i>t</i> . (Shown)	Comments Not well done. The intent of this question is for you to form an equation of plane that contains the polygon. SO one should start from the definition of equation of plane that has the form $\mathbf{r} = \mathbf{b} + s\mathbf{a} + t\mathbf{b}$, for some real parameters <i>s</i> and <i>t</i> .
	Alternate Solution Define a point N such that NBO are collinear and NG is parallel to OA (see annotated diagram), $\overrightarrow{BN} = t\mathbf{b}$ $\overrightarrow{NG} = s\mathbf{a}$, for real constants <i>s</i> , <i>t</i> . Hence $\overrightarrow{BG} = s\mathbf{a} + t\mathbf{b}$, for real constants <i>s</i> , <i>t</i> . (Shown)	Some out-of-the-box (literally, as one has to define another point out of the octagon) solutions were presented and it seems an easier approach using just basic vectors by applying triangle law of addition.

(b)	$\overrightarrow{BG} \cdot \overrightarrow{OA} = 0$ $(s\mathbf{a} + t\mathbf{b}) \cdot (\mathbf{a}) = 0$ $s\mathbf{a} \cdot \mathbf{a} + t\mathbf{b} \cdot \mathbf{a} = 0$	Most can start with fact that the dot product of the 2 vectors is 0.
	$s \mathbf{a} ^{2} + t \mathbf{b} \mathbf{a} \cos \angle AOB = 0$ $s \mathbf{a} ^{2} + t \mathbf{b} \mathbf{a} \cos 25\% = 0$	Most showed the expansion clearly but failed to recognize that the
	$s \mathbf{a} + t \mathbf{a} \mathbf{a} \cos 135^\circ = 0$ $s - \frac{t}{\sqrt{2}} = 0$	length of OB and OA are equal ($ \mathbf{b} = \mathbf{a} $) since they
	$\int \frac{\sqrt{2}}{t} = \sqrt{2}s \qquad \text{(Shown)}$	are sides of a regular octagon. Also students are reminded to write the dot () clearly
(c)	$\overrightarrow{BO} \bullet \overrightarrow{BG} = \left \overrightarrow{BO} \right \left \overrightarrow{BG} \right \cos \angle OBG$	Many students attempted
	$(-\mathbf{b}) \cdot (s\mathbf{a} + t\mathbf{b}) = \mathbf{b} ^2 \cos 135^\circ$	note that we are required to consider a suitable scalar
	$-s\mathbf{b}\cdot\mathbf{a}-t\left \mathbf{b}\right ^{2}=-\frac{\left \mathbf{b}\right ^{2}}{\sqrt{2}}$	product and it is very unlikely that it will be the same dot product we did at
	$-s\left \mathbf{b}\right ^{2}\cos 135^{\circ}-t\left \mathbf{b}\right ^{2}=-\frac{\left \mathbf{b}\right ^{2}}{\sqrt{2}}$	part (b).
	$\frac{s}{\sqrt{2}} - t = -\frac{1}{\sqrt{2}}$	In considering $\overrightarrow{BO} \cdot \overrightarrow{BG}$, note that the angle they make with each other is
	$s - \sqrt{2t} = -1$	135° and not 45° .
	Sub $t = \sqrt{2}s$ into $s - \sqrt{2}t = -1$. $s - 2s = -1 \Longrightarrow s = 1$ and therefore, $t = \sqrt{2}$.	However if it is $OB \cdot BG$, then yes it is 45° . Draw diagrams (with
	Alternatively	arrows to see) to know which angles we are
	$\overrightarrow{BG} \bullet \overrightarrow{BG} = \left \overrightarrow{BG} \right ^2$	referring to (arrows should be diverging out).
	$(s\mathbf{a}+t\mathbf{b}) \cdot (s\mathbf{a}+t\mathbf{b}) = \mathbf{a} ^2$	0
	$s^{2} \mathbf{a} ^{2} + 2st(\mathbf{a} \cdot \mathbf{b}) + t^{2} \mathbf{b} ^{2} = \mathbf{a} ^{2}$ $s^{2} \mathbf{a} ^{2} + 2st(\mathbf{a} \mathbf{b} \cos (125^{\circ})) + t^{2} \mathbf{b} ^{2} = \mathbf{a} ^{2}$	135°
	$s \mathbf{a} + 2st(\mathbf{a} \mathbf{b} \cos 135^{\circ}) + t \mathbf{b} = \mathbf{a} $ $s^{2} - \sqrt{2}st + t^{2} = 1$	K X
	Sub $t = \sqrt{2}s$ into $s^2 - \sqrt{2}st + t^2 = 1$. $s^2 - 2s^2 + 2s^2 = 1 \Longrightarrow s = \pm 1$ and therefore, If $s = 1, t = \sqrt{2}$. If $s = -1, t = -\sqrt{2}$ it is reject as coefficient of b has got positive.	Some rather common mistakes include squaring vectors, which is illegal and not allowed! We can only square magnitude of vector (modulus).

5 Do not use a calculator in answering this question.

(a) The complex number z is given by

$$z = \frac{\left(-\sqrt{3}-i\right)^5}{\cos\left(\frac{1}{7}\pi\right) - i\sin\left(\frac{1}{7}\pi\right)}.$$
[4]

Find |z| and $\arg(z)$.

- (b) (i) The roots of the equation $w^2 = 4i$ are w_1 and w_2 . Find w_1 and w_2 in cartesian form x + iy, showing your working. [3]
 - (ii) Hence, or otherwise, find in exact cartesian form the roots v_1 and v_2 of the equation

$$v^2 - 10v + (25 - i) = 0.$$
 [3]

5	Solution [10] Complex Numbers	Comments
(a)	Now,	Some students simply
	$\left \frac{1}{2} \right = \left \frac{1}{(1-2)^2} + (1-1)^2 \right = 2$	ignore the instructions at
	$ -\sqrt{3}-1 = \sqrt{(-\sqrt{3})} + (-1) = 2$	the start of the question and
	$(\sqrt{2})$	used GC to provide the
	and $\arg(-\sqrt{3}-1) = -(\pi - \frac{\pi}{6}) = -\frac{\pi}{6}$.	answer. If there is
	(1) (1) (1) (1)	insufficient working to
	$\left \cos\left(\frac{1}{7}\pi\right) - 1\sin\left(\frac{1}{7}\pi\right)\right = 1$	Justify a correct answer,
	and $ang(aag(1-), i, aig(1-))$ π	NO marks is awarded.
	and $\arg(\cos(\frac{1}{7}\pi)^{-1}\sin(\frac{1}{7}\pi)) = -\frac{1}{7}$	One common mistake is
		160π
	Hence,	that the $\arg(z) = -\frac{109\pi}{42}$
	$ -\sqrt{3}-i ^{5}$ 2 ⁵	and students did not
	$ z = \frac{1}{ z ^2} = \frac{1}{ z ^2} = \frac{1}{ z ^2} = \frac{1}{ z ^2} = 32.$	provide the final answer in
	$\left \cos\left(\frac{\pi}{7}n\right) - 1\sin\left(\frac{\pi}{7}n\right)\right $	principle range.
	And,	
	$\arg(z) = 5\arg\left(-\sqrt{3}-i\right) - \arg\left(\cos\left(\frac{1}{7}\pi\right) - i\sin\left(\frac{1}{7}\pi\right)\right)$	Quite a lot of students also
	$\begin{pmatrix} 5\pi \end{pmatrix}$ $\begin{pmatrix} \pi \end{pmatrix}$	provided the $(1, 1)$
	$=5\left(-\frac{3\pi}{6}\right)-\left(-\frac{\pi}{7}\right)$	$\arg\left(\cos\left(\frac{1}{7}\pi\right)-i\sin\left(\frac{1}{7}\pi\right)\right)$
	169π	as $\frac{\pi}{-}$ instead and hence
	$=-\frac{1}{42}$	7
	π	leading to wrong answer.
	$\equiv -\frac{\pi}{42}$ (principle range)	Also, quite a lot of students
	42	provided $\arg\left(-\sqrt{3}-i\right) = \frac{\pi}{6}$
		as they did not visualise the
		quadrant where $-\sqrt{3} - i$ is
		located and provided the
		wrong angle
(b)	$(x+iy)^2 = 4i$	This question is badly
		attempted and some simply
	$x^2 + 2xy_1 - y^2 = 41$	used the GC to provide the
	$x^2 - y^2 + 2xyi = 0 + 4i$	correct answer which result
		in NO marks awarded.

	By comparing parts; Re: $x^2 - y^2 = 0 \Rightarrow x = \pm y$ Im: $2xy = 4 \Rightarrow y = \frac{2}{x}$ If $y = -x$, $-x = \frac{2}{x} \Rightarrow -x^2 = 2$ (No solutions as $x^2 \ge 0$ for real x.) If $y = x$, $x = \frac{2}{x} \Rightarrow x = \pm \sqrt{2} \Rightarrow y = \pm \sqrt{2}$.	Quite a few students used the quadratic formula and resulted in the same answer and cannot move on. Note: When expressing a complex number is expressed in exponential form, $w = re^{i\theta}$ and $r \ge 0$.
	Hence the possible numbers are, $\sqrt{2} + \sqrt{2}i$ or $-\sqrt{2} - \sqrt{2}i$.	
(c)	$\frac{\text{Method 1:}}{v^2 - 10v + (25 - i) = 0}$ $v = \frac{10 \pm \sqrt{(-10)^2 - 4(25 - i)}}{2}$ $v = \frac{10 \pm \sqrt{4i}}{2}$ $v = \frac{10 \pm (\sqrt{2} + \sqrt{2i})}{2}$ $v = 5 + \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i \text{ or } 5 - \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$ $\frac{\text{Method 2:}}{v^2 - 10v + (25 - i) = 0}$ $v^2 - 10v + 25 = i$ $(v - 5)^2 = i$ $(2v - 10)^2 = 4i$ $2v - 10 = \sqrt{2} + \sqrt{2}i \text{ or } 5 - \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$	This part of the question is badly attempted. Method 1 is the easier and students can see quite clearly the use of part (b) here. For students using Method 2, there are slips in some of their work.

(a) Show that
$$\ln(2^{r-1}\sin 2\theta) - \ln(2^r\sin \theta) = \ln(\cos \theta)$$
. [2]

(**b**) By letting
$$\theta = \frac{1}{2^r}$$
, find $\sum_{r=1}^n \ln\left(\cos\left(\frac{1}{2^r}\right)\right)$ in terms of *n*. [3]

[2]

(c) Hence, show that
$$\sum_{r=1}^{\infty} \ln\left(\cos\left(\frac{1}{2^r}\right)\right)$$
 converges and state its value.
(You may assume that $2^n \sin\left(\frac{1}{2^n}\right) \to 1$ as $n \to \infty$.)

6	Solutions [7] MoD	Comments
(a)	$\ln\left(2^{r-1}\sin 2 heta ight) - \ln\left(2^r\sin heta ight)$	A handful of students used a
	$= \ln\left(\frac{2^{r-1}\sin 2\theta}{2^r\sin\theta}\right)$	wrong log law $\ln\left(\frac{a}{b}\right) = \frac{\ln a}{\ln b}.$
	$=\ln\left(\frac{2^r\sin\theta\cos\theta}{2^r\sin\theta}\right)$	
	$=\ln(\cos\theta)$ (Shown)	
(b)	Let $\theta = \frac{1}{2^r}$, $\ln(2^{r-1}\sin 2\theta) - \ln(2^r\sin\theta) = \ln(\cos\theta)$ $\ln\left(2^{r-1}\sin2\left(\frac{1}{2^r}\right)\right) - \ln\left(2^r\sin\left(\frac{1}{2^r}\right)\right) = \ln\left(\cos\left(\frac{1}{2^r}\right)\right)$ $\ln\left(2^{r-1}\sin\left(\frac{1}{2^{r-1}}\right)\right) - \ln\left(2^r\sin\left(\frac{1}{2^r}\right)\right) = \ln\left(\cos\left(\frac{1}{2^r}\right)\right)$ $\sum_{r=1}^{n}\ln\left(\cos\left(\frac{1}{2^r}\right)\right)$ $= \sum_{r=1}^{n}\ln\left(2^{r-1}\sin\left(\frac{1}{2^{r-1}}\right)\right) - \ln\left(2^r\sin\left(\frac{1}{2^r}\right)\right)$ $= \ln(\sin 1) - \ln\left(2\sin\left(\frac{1}{2}\right)\right)$ $+ \ln\left(2\sin\left(\frac{1}{2}\right)\right) - \ln\left(2^2\sin\left(\frac{1}{2^2}\right)\right)$ + $+ \ln\left(2^{n-2}\sin\left(\frac{1}{2^{n-2}}\right)\right) - \ln\left(2^{n-1}\sin\left(\frac{1}{2^n}\right)\right)$ $+ \ln\left(2^{n-1}\sin\left(\frac{1}{2^{n-1}}\right)\right) - \ln\left(2^n\sin\left(\frac{1}{2^n}\right)\right)$	Majority understood that part (a) needed to be used here. However, instead of substituting $\theta = \frac{1}{2^r}$ in part (a) to convert θ to r, many expanded the summation with θ there. Thus, the cancellation of the sine term was not successful.
	$= \ln(\sin 1) - \ln\left(2^n \sin \frac{1}{2^n}\right)$	
(c)	As $n \to \infty$, $\ln\left(2^n \sin\left(\frac{1}{2^n}\right)\right) \to \ln 1$, hence,	Majority had some ideas of using limits and the hint here. However, the

$$\sum_{r=1}^{n} \ln\left(\cos\frac{1}{2^{r}}\right) \rightarrow \ln\left(\sin 1\right) - \ln 1 = \ln\left(\sin 1\right) \text{ a finite value.}$$

$$\text{This implies, } \sum_{r=0}^{\infty} \ln\left(\cos\frac{1}{2^{r}}\right) \text{ converges.}$$

$$\text{In particular,}$$

$$\sum_{r=0}^{\infty} \ln\left(\cos\frac{1}{2^{r}}\right) = \lim_{n \to \infty} \sum_{r=0}^{n} \ln\left(\cos\frac{1}{2^{r}}\right) = \ln\left(\sin 1\right).$$

$$\text{Many simply evaluated the infinite sum to give the final answer without attempting to explain or show that the infinite sum is convergent.}$$

$$\text{There were actually 2 parts to part (c).}$$

- 7 (a) Given that $y^3 = e^{ax} \cos x$, where *a* is a constant, show that $3y^2 \frac{dy}{dx} ay^3 = -e^{ax} \sin x$. [2]
 - (b) By further differentiation of this result, find the Maclaurin series for y, up to and including the term in x^2 . [5]
 - (c) Given that the first three non-zero terms in the above Maclaurin series are equal to the first three non-zero terms in the series expansion of e^{x+bx^2} , where *b* is a constant, find the values of *a* and *b*. [3]

7	Solutions [10] Maclaurin Series	Comments			
(a)	$y^3 = e^{ax} \cos x$	No issue here.			
	$3y^{2} \frac{dy}{dx} = ae^{ax} \cos x - e^{ax} \sin x$ $= ay^{3} - e^{ax} \sin x$ $\therefore 3y^{2} \frac{dy}{dx} - ay^{3} = -e^{ax} \sin x \text{ (shown)}$				
(b)	Differentiate both sides wrt to <i>x</i> :	Many had difficulties in			
	$3y^{2}\frac{d^{2}y}{dx^{2}} + 6y\left(\frac{dy}{dx}\right)^{2} - 3ay^{2}\frac{dy}{dx} = -ae^{ax}\sin x - e^{ax}\cos x$	performing this second round of differentiation, particularly in differentiating $3y^2 \frac{dy}{1}$. By			
	When $x = 0$: $y = 1$	ax product rule, we should obtain			
	$\frac{dy}{dx} = \frac{a}{3}$ $\frac{d^2y}{dx} = \frac{a^2 - 3}{3}$	$3y^{2}\left(\frac{d^{2}y}{dx^{2}}\right) + \frac{dy}{dx}\left(6y\frac{dy}{dx}\right).$			
	$dx^2 = 9$	when this part was not done $d^2 y$			
	The Maclaurin series for y	correctly, $\frac{d^2 y}{dx^2}\Big _{x=0}$ was			
	$=1+x\left(\frac{a}{3}\right)+\frac{x^{2}}{2}\left(\frac{a^{2}-3}{9}\right)+$	incorrect.			
	$=1+\frac{a}{3}x+\frac{a^2-3}{18}x^2+\dots$				
(c)	$e^{x+bx^2} = 1 + (x+bx^2) + \frac{(x+bx^2)^2}{2} + \dots$	A number of students derive the series of e^{x+bx^2} via differentiation instead of			
	$= 1 + x + bx^2 + \frac{x^2}{2} + \dots$	using the standard series of e^x in MF26. Some errors were			
	$=1+x+\frac{2b+1}{2}x^{2}+$	made and led to x^2 term.			
	: by comparing coefficients,	A very common mistake in the			
	$\frac{a}{3} = 1 \Longrightarrow a = 3$ and	comparison was that students compared term instead of			
	$\frac{a^2-3}{18} = \frac{2b+1}{2} \Longrightarrow b = -\frac{1}{6}$	coefficients. Eg compared			
	$x+bx^2$ incorrec	with t.	$\frac{a}{3}x$	which	is
--	----------------------	------------	----------------	-------	----

8 There are two identical tanks, each of capacity 90 000 m^3 . Robots A and B are each programmed to fill up an empty tank with water at the end of each day.

Robot A fills the tank with 6000 m^3 of water on the first day. For each subsequent day, Robot A fills the tank with 50 m^3 of water lesser than the previous day.

Robot B fills the tank with 9000 m^3 of water on the first day. For each subsequent day, Robot B fills the tank with 85% of the volume of water it fills the tank in the previous day.

- (a) Find the number of days for robot A to fill up the tank.
- (b) Determine with clear reasoning whether robot B would be able to fill up the tank with water. [1]

[3]

[2]

- (c) Find the total amount of water that robot B fills in the tank by the end of the 10^{th} day.
- (d) At the start of the 11th day, robot B is reprogrammed. At the end of the 11th day, it fills the tank with 5% more volume of water it fills on the previous day and continues to do so for each subsequent day.

Show that the total volume of water, in m^3 , that Robot B fills in the tank after reprogramming can be expressed as

$$189000(0.85)^{9}(1.05^{n}-1),$$

where *n* is the number of days starting from the 11^{th} day. Hence, determine with clear reasoning which robot will be faster in filling up the tank with the above change. [5]

8	Solutions [11] AP GP	Comments
(a)	a = 6000, d = -50	Generally well done.
	$S_n \ge 90000$	
	$\frac{n}{2} [2(6000) + (n-1)(-50)] \ge 90000$	
	$n[12000-50n+50] \ge 180000$	
	$n[241-n] \ge 3600$	
	$n^2 - 241n + 3600 \le 0$	
	$n^2 - 241n + 3600 \le 0$	
	$16 \le n \le 225$	
	Robot A takes 16 days to fill up the tank.	
	Alternative Method	
	$\frac{n}{2} [2(6000) + (n-1)(-50)] \ge 90000$	
	$n^2 - 241n + 3600 \le 0$	

14

	NORHAL FLOAT DEC REAL RADIAN MP NORHAL FLOAT DEC REAL RADIAN MP Ploti Plot2 Plot3 Y1 Y1 = $\frac{11}{12}$ $\frac{952}{13}$ Y2 = $\frac{13}{15}$ $\frac{636}{14}$ $\frac{11}{12}$ Y4 = $\frac{952}{15}$ $\frac{13}{16}$ $\frac{636}{14}$ Y5 = $\frac{15}{15}$ $\frac{200}{16}$ $\frac{12}{120}$ Y7 = $\frac{12}{15}$ $\frac{210}{120}$ $\frac{12}{15}$ Y7 = $\frac{12}{15}$ $\frac{200}{21}$ $\frac{12}{120}$ Y7 = $\frac{12}{15}$ $\frac{200}{120}$ $\frac{12}{120}$ Y7 = $\frac{12}{15}$ $\frac{200}{120}$ $\frac{12}{120}$ Y8 = $\frac{12}{10}$ $\frac{12}{10}$ $\frac{12}{10}$ $\frac{12}{10}$ Y7 = $\frac{12}{10}$ $\frac{12}{10}$ $\frac{12}{10}$ $\frac{12}{10}$ $\frac{12}{10}$ Y8 = $\frac{12}{10}$ $\frac{12}{10}$ $\frac{12}{10}$ $\frac{12}{10}$ $\frac{12}{10}$ NY = $\frac{12}{10}$ $\frac{12}{10}$ $\frac{12}{10}$ $\frac{12}{10}$ $\frac{12}{10}$ Y8 = $\frac{12}{10}$ $\frac{12}{10}$ $\frac{12}{10}$ $\frac{12}{10}$ $\frac{12}{10}$ NY = $\frac{12}{10}$	
(b)	a = 9000, r = 0.85 $S_{\infty} = \frac{9000}{1 - 0.85} = 60000 < 90000$ Robot B would not be able to fill up the tank as the theoretical maximum volume it would fill is 60000 m ³ which is less than the capacity of the tank.	Many students managed to get this part correct. There was a minority of students who solved $S_n = 90000$ and obtained a negative value for <i>n</i> and concluded from there. However, such an explanation is incomplete and does not demonstrate complete understanding of the context of filling up the tank. They are advised to consider when $n \rightarrow \infty$ instead.
(c)	a = 9000, r = 0.85 $S_{10} = \frac{9000(1 - 0.85^{10})}{1 - 0.85}$ $S_{10} = 48187.53574$ Total amount of water that robot B fills in the tank by the end of the 10 th day ≈ 48200 m ³ (3.s.f)	Generally well done. Only a very small minority made the mistake of finding S_9 instead.
(d)	$S_{10} = 48187.53574$ Let t_n be the volume of water Robot B fills on the <i>n</i> th day, starting from the 11 th day. Volume of water filled on the 10 th day = 9000(0.85) ⁹ For the 11 th day, $t_1 = 9000(0.85)^9(1.05)$ Hence, $t_1 + t_2 + + t_n = \frac{9000(0.85)^9(1.05)(1.05^n - 1)}{1.05 - 1}$ $= 189000(0.85)^9(1.05^n - 1)$ (Shown)	This part was poorly done by many students. Many failed to show the result as they missed out 1.05 in their working. Note that here, the first time of the GP should be at the 11 th day i.e. $t_1 = 9000(0.85)^9(1.05)$

Consider		Many students did not
189000($(0.85)^9 (1.05^n - 1) \ge 90000 - 48187.53574$	recognize that $S_n =$
$1.05^n \ge 1$ $n \ge 13.74$.9551545048 4189311	$189000(0.85)^{9}(1.05^{n}-1)$ was referring
With the up the ta robot A v	change, robot B will take $14+10 = 24$ days to fill nk while robot A still takes 16 days, therefore would be faster in filling up the tank. ive Method:	to the total volume <u>after</u> <u>reprogramming</u> and thus when finding when the tank will be filled up, there is a need to consider the remaining volume that needs to be filled up i.e.
189000($0.85)^9 \left(1.05^n - 1\right) \ge 90000 - 48187.53574$	solve S_n > 90000 - 48187 53574
189000($0.85)^9 \left(1.05^n - 1\right) \ge 41812.46426$	Many incorrectly solved the inequality
NORMAL FLOAT PTOTE Plot2 NY121890 NY22 NY32 NY42 NY55 NY55 NY55 NY55 NY55 NY55 NY55 NY55	NORMAL FLOAT DEC REAL RADIAN MP NORMAL FLOAT DEC REAL RADIAN MP Plot3 NORMAL FLOAT DEC REAL RADIAN MP 00(0.85°)(1.05×-1) 11 11 31096 12 34839 13 38770 14 12897 15 47231 16 51761 19 66843 20 72374 21 78182 Y1=42897.096514804	$S_n \ge 90000$ instead. Another common mistake was incorrectly concluding that B will take 14 days to fill up the tank instead of 14 + 10 = 24 days.
n	$189000(0.85)^{9}(1.05^{n}-1)$	
13	38769.83	
14	42897.10 > 41812.46426	
With the up the ta robot A	change, robot B will take $14+10 = 24$ days to fill nk while robot A still takes 16 days, therefore would be faster in filling up the tank.	

9 The closed curve C, which is symmetrical about the line x = 0, has parametric equations $x = \cos 3t + \cos t$, $y = -2\cos 2t$,

for
$$\frac{\pi}{4} \le t \le \frac{3\pi}{4}$$
.
(a) Sketch C. [1]
(b) Find the exact equation of the tangent of C at the point when $t = \frac{\pi}{4}$. [3]

(c) Find the acute angle between the two tangents of curve C at $t = \frac{\pi}{4}$ and $t = \frac{3\pi}{4}$. [2]

(d) Show that the area enclosed by the curve C is given by

$$\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} 3\sin 5t + \sin 3t + 2\sin t \, dt \, .$$

Hence find the area enclosed by the curve *C* correct to 3 decimal places. [4]

9	Solution [10] Parametric Curve, Applications of Differentiation,	Comments
	Applications of Integration.	
(a)	C	Generally ok for this part except for some students who have overlooked the given range of values for <i>t</i> being only $\frac{\pi}{4} \le t \le \frac{3\pi}{4}$ and thus wrongly provided further sketch of non-required portions of the curve.
(b)	$\frac{dx}{dt} = -3\sin 3t - \sin t \text{ and } \frac{dy}{dt} = 4\sin 2t$ $\frac{dy}{dx} = -\frac{4\sin 2t}{3\sin 3t + \sin t}$ When $t = \frac{\pi}{4}$, $x = y = 0$ and $\frac{dy}{dx} = -\frac{4\sin\left(\frac{2\pi}{4}\right)}{3\sin\left(\frac{3\pi}{4}\right) + \sin\left(\frac{\pi}{4}\right)} = -\sqrt{2}$ Equation of the tangent: $y - 0 = -\sqrt{2}(x - 0)$ $y = -\sqrt{2}x$.	There were mistakes in differentiating <i>x</i> and <i>y</i> with respect to <i>t</i> resulting in the wrong expression for $\frac{dy}{dx}$ and thus its value when $t = \frac{\pi}{4}$. Also, there were mistake in finding the value of <i>x</i> and <i>y</i> when $t = \frac{\pi}{4}$ and resulted in the wrong equation for the tangent as needed

		Students should also simplify their answers eg
		$\left. \frac{dy}{dx} \right _{t=\frac{\pi}{4}} = -\frac{2}{\sqrt{2}} = -\sqrt{2}$
(c)	At $t = \frac{\pi}{4}$, the gradient of the tangent $= -\sqrt{2}$.	Not well done for this part. Many students attempted to find the gradient of the tangent
	Angle it makes with the y-axis $=\frac{\pi}{2} - \tan^{-1}(\sqrt{2})$.	at $t = \frac{3\pi}{4}$ to be $\sqrt{2}$ and
	As the curve is symmetric about $x = 0$,	wrongly conclude that the tangents at $t = \frac{\pi}{4}$ and $t = \frac{3\pi}{4}$
	$= 2\left(\frac{\pi}{2} - \tan^{-1}\sqrt{2}\right) = 1.23 \text{ rad}(3 \text{ s.f.}) \text{ or } 70.5^{\circ}(1 \text{ d.p.})$	are perpendicular and thus angle between them is 90°. Note that $\sqrt{2} \times (-\sqrt{2}) \neq -1$
(d)	Required area $= \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} y(t) \frac{dx}{dt} dt$ $= \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} -2\cos 2t (-3\sin 3t - \sin t) dt$ $= \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} 3(2\sin 3t \cos 2t) + 2\sin t \cos 2t dt$ $= \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} 3(\sin 5t + \sin t) + \sin 3t + \sin (-t) dt$ $= \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} 3\sin 5t + \sin 3t + 2\sin t dt \qquad (Shown)$ $= 1.508 \text{ units}^{2} (3 \text{ d.p.})$	Note that $\sqrt{2} \times (-\sqrt{2}) \neq -1$. Some students were not able to start this part with either the $\int x \left(\frac{dy}{dt}\right) dt$ or $\int y \left(\frac{dx}{dt}\right) dt$ method. For the $\int x \left(\frac{dy}{dt}\right) dt$ method, the required area should be $= -2\int_{0}^{2} x dy$ $= -\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} (\cos 3t + \cos t) (4\sin 2t) dt$ To show the given result, it is more efficient using the $\int y \left(\frac{dx}{dt}\right) dt$ method and apply factor theorem to the expressions: $6\sin 3t \cos 2t$ and $2\sin t \cos 2t$. Many students did not realise that for the last part, GC could be use and chose instead to integrate all the involved terms resulting in taking longer time to attain the answer. Many students also did not realise that the final answer of
		this part should be corrected to 3 decimal places and left their answer in 3 significant figures instead.

10 In a robotics competition, toy cars move along straight lines to complete tasks. Points are defined relative to the origin (0,0,0). The *x*-, *y*- and *z*-axes are in the directions east, north and vertically upwards respectively, with units in centimetres.

The position vectors of two toy cars A and B, with respect to time t in seconds, are given as $\mathbf{r}_{\mathbf{A}} = t(5\mathbf{i} + \mathbf{k})$ and $\mathbf{r}_{\mathbf{B}} = \mathbf{i} + 6\mathbf{j} - \mathbf{k} + t(4\mathbf{i} - \mathbf{j} + \mathbf{k})$ respectively.

- (a) Show that after two seconds, car *B* is at the point with coordinates (9,4,1) and find the distance that car *A* has travelled in the same duration. [2]
- (b) Determine whether cars A and B meet.
- (c) Explain why cars A and B travel on a common plane surface and show that the cartesian equation of the surface is x y 5z = 0. [5]

[3]

A drone flies above the cars to capture images of the cars during the competition. The shortest distance between the drone and the surface where cars *A* and *B* travel is maintained at 50 cm.

(d) Find the cartesian equation of the plane containing the flight path of the drone. [2]

-		
10	Solutions [12] 3-D Vectors	Comments
(a)	At $t = 2$, $\mathbf{r}_{\mathbf{B}} = \begin{pmatrix} 1 \\ 6 \\ -1 \end{pmatrix} + 2 \begin{pmatrix} 4 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 9 \\ 4 \\ 1 \end{pmatrix}$ Hence, car <i>B</i> is at point $(9, 4, 1)$. (shown)	Vast majority are able to show that car <i>B</i> is a the position. A few students verify that $t = 2$ instead which is not acceptable.
	At $t = 2$, $\mathbf{r}_{A} = 2 \begin{pmatrix} 5 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 10 \\ 0 \\ 2 \end{pmatrix}$ Distance that car <i>A</i> has travelled $= \begin{vmatrix} 10 \\ 0 \\ 2 \end{vmatrix}$ $= \sqrt{10^{2} + 2^{2}}$ $= \sqrt{104} \text{ cm}$	For the second part, while most students are able to obtain $\mathbf{r}_{\mathbf{A}} = \begin{pmatrix} 10\\0\\2 \end{pmatrix}$, some of them interpreted the subsequent distance wrongly, with many of them finding $\begin{vmatrix} 10\\0\\2 \end{vmatrix} - \begin{vmatrix} 5\\0\\1 \end{vmatrix}$ instead.
(b)	When the 2 cars meet, they have travelled the same amount of time t, $t \begin{pmatrix} 5\\0\\1 \end{pmatrix} = \begin{pmatrix} 1\\6\\-1 \end{pmatrix} + t \begin{pmatrix} 4\\-1\\1 \end{pmatrix}$ $\Rightarrow \begin{cases} 5t = 1 + 4t(1)\\0 = 6 - t(2)\\t = -1 + t(3)\end{cases}$ From (2), t = 6 However, it does not satisfy (1) and (3). No consistent solution.	Many who solve the question this way managed to conclude correctly. However, there are some students who concluded that the cars do not meet because the paths do not intersect. That is not correct. Note that the paths of the cars actually cross each other; it's just that the cars passed by the point of intersection at different times and hence do not meet.

	Hence cars A and B do not meet.	For students who solved the
	$\underline{\text{Alternatively,}}_{L_{A}} = \begin{pmatrix} 5\\0\\1 \end{pmatrix} = \begin{pmatrix} 1\\6\\-1 \end{pmatrix} + t_{B} \begin{pmatrix} 4\\-1\\1 \end{pmatrix} \Longrightarrow \begin{cases} 5t_{A} = 1 + 4t_{B}\\0 = 6 - t_{B}\\t_{A} = -1 + t_{B} \end{cases}$	question this way (having different symbols for the parameters), more concluded wrongly because they thought that because the paths
	Solving, $t_A = 5$ and $t_B = 6$	intersect, the cars meet.
	Since $t_A \neq t_B$, cars A and B do not meet.	
	(Although the two paths intersect.)	
(c)	To check if the 2 lines of travel lie on the same plane, $t_{A} \begin{pmatrix} 5\\0\\1 \end{pmatrix} = \begin{pmatrix} 1\\6\\-1 \end{pmatrix} + t_{B} \begin{pmatrix} 4\\-1\\1 \end{pmatrix} \Rightarrow \begin{cases} 5t_{A} = 1 + 4t_{B}\\0 = 6 - t_{B}\\t_{A} = -1 + t_{B}\end{cases}$ Solving, $t_{A} = 5$ and $t_{B} = 6$ Therefore, the lines intersect. Since the lines intersect (i.e. the paths of cars <i>A</i> and <i>B</i> intersect), hence the two cars travel on a common surface. (5) (A) (1)	Many students could not earn the full credits for this question because they could not argue correctly why the paths travel on a common plane. Many, however, were able to find the normal vector of the common plane and set up its equation.
	Normal to surface $= \begin{pmatrix} 5\\0\\1 \end{pmatrix} \times \begin{pmatrix} 4\\-1\\1 \end{pmatrix} = \begin{pmatrix} 1\\-1\\-5 \end{pmatrix}$	
	: the cartesian equation of the common surface is $x - y - 5z = 0$.	
	Alternative $ \begin{pmatrix} 5 \\ 0 \\ 1 \end{pmatrix} \times \begin{pmatrix} 4 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ -5 \end{pmatrix} $ Consider the plane $p: x - y - 5z = 0$.	
	As, $ \begin{pmatrix} 5\\0\\1 \end{pmatrix} \cdot \begin{pmatrix} 1\\-1\\-5 \end{pmatrix} = 0 \text{ and } \begin{pmatrix} 4\\-1\\1 \end{pmatrix} \cdot \begin{pmatrix} 1\\-1\\-5 \end{pmatrix} = 0 $ Both line of travel is parallel to the plane	
	As, (0,0,0) is on the line of travel of car A and $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ -5 \end{pmatrix} = 0, (0,0,0) \text{ is on plane } p \text{ as well.}$	
	Therefore, the line of travel of car A lies on plane p .	
	As, $(1, 6, -1)$ is on the line of travel of car B and	
©RIVE	ER VALLEY HIGH SCHOOL 9758/01/2024	

	$\begin{pmatrix} 1\\6\\-1 \end{pmatrix} \cdot \begin{pmatrix} 1\\-1\\-5 \end{pmatrix} = 1 - 6 + 5 = 0, (1, 6, -1) \text{ is on plane } p \text{ as}$ well. Therefore, the line of travel of car B lies on plane p . Therefore, both path of travel is on a common plane $x - y - 5z = 0$.	
(d)	Let the equation of the required plane be $\mathbf{r} \cdot \begin{pmatrix} 1 \\ -1 \\ -5 \end{pmatrix} = d, \text{ i.e. } \mathbf{r} \cdot \begin{pmatrix} 1 \\ -1 \\ -5 \end{pmatrix} = \frac{d}{\sqrt{27}}$ $\therefore \left \frac{d}{\sqrt{27}} \right = 50$ $\Rightarrow \frac{d}{\sqrt{27}} = -50$ (not 50 because the normal vector's <i>z</i> -coordinate is negative, indicating it is pointing downwards) $\therefore d = -150\sqrt{3}$ Hence, the equation of the plane is $x - y - 5z = -150\sqrt{3}$	This part is not well answered. Amongst students who can handle distances between parallel planes, almost all of them fail to realise the need for the negative sign for '-150 $\sqrt{3}$ '. Only one or two students realised that!

11 An experiment was conducted at room temperature, where the levels of the concentration of a chemical is investigated over time. The initial concentration of the chemical was $x_0 \text{ mol/dm}^3$. A possible model suggests that the

rate at which the concentration decreases is directly proportional to x^2 , where x mol/dm³ is the concentration of the chemical at time t minutes after the start of the experiment.

- (a) (i) By setting up and solving a differential equation, show that the time taken for the concentration of the chemical to reach $\frac{x_0}{2}$ is inversely proportional to x_0 . [4]
 - (ii) It was observed that it took 4 min and 16 min to reach one-half and one-quarter of x_0 respectively. Explain why the above model is not suitable. [2]

For the rest of the question, take $x_0 = \frac{3}{2}$.

It was later discovered that the concentration of the chemical can be modelled in an alternative way. Due to a reversible reaction, the rate at which the concentration of the chemical increases is directly proportional to $\left(\frac{3}{2} - x\right)^2$ while the rate at which it decreases is directly proportional to x^2 .

It is given that there is no change in the concentration when the concentration is $\frac{1}{2}$ mol/dm³.

- (b) (i) For this model, show that $\frac{dx}{dt} = -k(4x^2 + 4x 3)$, where k is a positive real constant. [3]
 - (ii) Solve this differential equation to find x in terms of t and k. [5]

11	Solution [14] Differential Equations	Comments
(ai)	$\frac{\mathrm{d}x_{\mathrm{decrease}}}{\mathrm{d}x^2} \propto x^2$	Mixed responses.
	$\frac{dt}{dt} = \frac{dx_{\text{decrease}}}{dt} = ax^2, \text{ for } a > 0$ $\frac{dx}{dt} = ax^2 = ax^2, \text{ for } a > 0$	A good number of students were able to identify and write down the DE.
	$\frac{dt}{dt} = -ax^{2}$ $\frac{1}{dt}\frac{dx}{dt} = -a$	However, a good minority were not able solve the
	$x^2 dt$	integral $\int \frac{1}{x^2} dx$, leaving
	$\int \frac{d}{x^2} dx = \int -a dt$	incorrect results such as -3
	$\frac{-1}{x} = -at + C$	$\ln \left x^2 \right $ and $\frac{x^{-3}}{-3}$.
	$x = \frac{-1}{C - at}$	And another good minority did not sub in the initial condition of $t = 0$, $r = r_{0}$ to
	When $t = 0, x = x_0$.	solve for the arbitrary
	$x_0 = \frac{-1}{C} \Longrightarrow C = -\frac{1}{x_0}$	constant <i>C</i> .

	-1	Stronger responses were
	$x = \frac{1}{1}$	able to identify and write
	$-\frac{1}{at}$	the required DE and solve
	X_0	for the general solution
	x_0	Next they would have
	$x = \frac{1}{1 + art}$	subbad in the initial
	$1 + \alpha x_0 t$	subbed in the initial
		condition given then sub in
	When $x = \frac{x_0}{x_0}$,	$x = \frac{x_0}{1}$ in their equation to
	2	2
	$\frac{x_0}{x_0} = \frac{x_0}{x_0}$	$1 \qquad 1 \qquad$
	$2^{-1} + ax_0t$	show that $l = \kappa \left(\frac{1}{x_0} \right)$ for
	1 + ar t - 2	some real constant k before
	$1 + \alpha x_0 t = 2$	
	$ax_0t = 1$	concluding that $t \propto \frac{1}{2}$.
	(1)(1)(1)(1)(1)(1)	X_0
	$t = \begin{bmatrix} - \\ a \end{bmatrix} \begin{bmatrix} - \\ r \end{bmatrix} \begin{bmatrix} \text{with } ->0 \end{bmatrix}$	
	$(u)(x_0)$ (u)	
	$t \propto \frac{1}{2}$ (Shown)	
(aii)		The question proved
, í	Time taken for decay of x_0 to $\frac{-x_0}{2} = 4$ min.	challenging to most
	1	students.
	Time taken for decay of $\frac{1}{2}x_0$ to $\frac{1}{4}x_0 = 16 - 4 = 12$ min.	
	Erom (ai) if the model was followed as the time taken is	Many were not sure how to
	inversely propertional we would have	use the timings given to
	inversery proportional, we would have:	show that the model was
	Time taken for decay of $\frac{1}{2}x_0$ to $\frac{1}{4}x_0 = 2(4) = 8$ min	not appropriate.
	instead.	
	Hence it does not follow the model in (ai).	Many who tried to used
		part (ai)'s result did not
	Alternative Method	fully appreciate what the
	X _a	result meant. Many wrote
	When $x = \frac{x_0}{2}, t = 4$	workings similar to
	2	comparing 8 mins with 16
	$\frac{x_0}{x_0} = \frac{x_0}{x_0}$	mins, which was not
	2 $1+4ax_0$	correct as the second half-
	1	life was $16 - 4 = 12$ mins.
	$a = \frac{1}{A_{\text{even}}}$	
	$+\lambda_0$	Attempts that subbed the
		timings back into their
	But when $x = \frac{x_0}{t} = 16$	equation were much longer
	4	and saw more success.
	$x_0 \qquad x_0$	
	$\frac{x_0}{4} = \frac{x_0}{1+16ax_0}$	
	$\frac{x_0}{4} = \frac{x_0}{1 + 16ax_0}$	
	$\frac{x_0}{4} = \frac{x_0}{1 + 16ax_0}$ $a = \frac{3}{1 + 16ax_0} \neq \frac{1}{1 + 16ax_0}$	
	$\frac{x_0}{4} = \frac{x_0}{1 + 16ax_0}$ $a = \frac{3}{16x_0} \neq \frac{1}{4x_0}$	
	$\frac{x_0}{4} = \frac{x_0}{1+16ax_0}$ $a = \frac{3}{16x_0} \neq \frac{1}{4x_0}$ This is not possible as <i>a</i> is a fixed constant.	

(=)		
(b)	$\frac{\mathrm{d}x_{\mathrm{increase}}}{\mathrm{d}t} \propto \left(\frac{3}{2} - x\right)^2$	Generally okay, but could be better.
	$\frac{\mathrm{d}x_{\text{increase}}}{\mathrm{d}t} = b \left(\frac{3}{2} - x\right)^2, \text{ for } b > 0$	A strong minority assumed that the proportionality
	$\frac{\mathrm{d}x}{\mathrm{d}x} = \frac{\mathrm{d}x_{\mathrm{increase}}}{\mathrm{d}x_{\mathrm{decrease}}} - \frac{\mathrm{d}x_{\mathrm{decrease}}}{\mathrm{d}x_{\mathrm{decrease}}}$	constant was the same throughout and wrote
	dt dt dt	$\frac{dx}{dx} = k \left[\begin{pmatrix} 3 \\ x \end{pmatrix}^2 \\ x^2 \right]$
	$\frac{\mathrm{d}x}{\mathrm{d}t} = b\left(\frac{3}{2} - x\right) - ax^2$	$\frac{dt}{dt} = \kappa \left[\left(\frac{2}{2} - x \right)^{-1} - x \right]$
	dr 1	which was medirect .
	When $\frac{\mathrm{d}x}{\mathrm{d}t} = 0, x = \frac{1}{2}$,	The best of responses where critical that k needed
	$0 = b \left(\frac{3}{2} - \frac{1}{2}\right)^2 - a \left(\frac{1}{2}\right)^2$	to be positive and properly defined their
	$0 = b - \frac{1}{4}a$	at the beginning.
	a = 4b	
	$\frac{\mathrm{d}x}{\mathrm{d}t} = b\left(\frac{3}{2} - x\right)^2 - 4bx^2$	
	$\frac{\mathrm{d}x}{\mathrm{d}t} = b\left(\frac{9}{4} - 3x + x^2 - 4x^2\right)$	
	$\frac{\mathrm{d}x}{\mathrm{d}t} = k\left(3 - 4x - 4x^2\right), k = \frac{3}{4}b$	
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -k\left(4x^2 + 4x - 3\right)(\mathrm{Shown})$	
(c)	$4x^2 + 4x - 3 = (2x + 1)^2 - 4$	Mixed responses.
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -k\left(4x^2 + 4x - 3\right)$	Majority of the students
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -k\left(\left(2x+1\right)^2 - 4\right)$	(either use partial fractions or completing the square)
	$\frac{1}{1}$ $\frac{dx}{dx}$	to tackle the problem.
	$\frac{1}{\left(2x+1\right)^2-2^2}\frac{dt}{dt} = -\kappa$	have the algebraic
	$\frac{1}{2} \int \frac{2}{(2x+1)^2 - 2^2} \mathrm{d}x = \int -k \mathrm{d}t$	skills/routines to solve the question to completion.
	$\frac{1}{2} \left(\frac{1}{2(2)} \ln \left \frac{2x + 1 - 2}{2x + 1 + 2} \right \right) = -kt + C_0$	The strongest of responses showed algebraic flare and
	$\ln 2x-1 = -8kt + 8C$	followed the routine with finesse. Most importantly
	$\left \frac{1}{2x+3}\right = -\kappa i + \kappa c_0$	they remembered the .
	$\frac{2x-1}{2x+3} = \pm e^{-8kt+8C_0} = De^{-8kt}, D = \pm e^{8C_0}$	and made x the subject
	When $t = 0, x_0 = \frac{3}{2}$	Common Mistokes include
1	_	Common Wistakes include:

$$\frac{2\left(\frac{3}{2}\right)-1}{2\left(\frac{3}{2}\right)+3} = De^{0}$$

$$D = \frac{4}{12} = \frac{1}{3}$$

$$\frac{2x-1}{2x+3} = \frac{1}{3}e^{-8kt}$$

$$6x-3 = 2e^{-8kt} + 3e^{-8kt}$$

$$x\left(6-2e^{-8kt}\right) = 3e^{-8kt} + 3$$

$$x = \frac{3+3e^{-8kt}}{6-2e^{-8kt}}$$

$$\frac{Alternative Method:}{dt}$$

$$\frac{dx}{dt} = -k\left(4x^{2} + 4x - 3\right)$$

$$\frac{dx}{dt} = -k\left(2x-1\right)\left(2x+3\right)$$

$$\frac{1}{(2x-1)(2x+3)}\frac{dx}{dt} = -k$$

$$\frac{1}{4}\int\frac{1}{2x-1} - \frac{1}{2x+3}\frac{dx}{dt} = \int -k dt$$

$$\frac{1}{4}\left(\frac{1}{2}\ln|2x-1| - \frac{1}{2}\ln|2x+3|\right) = -kt + C_{0}$$

$$\ln\left|\frac{2x-1}{2x+3}\right| = -8kt + 8C_{0}$$

$$\frac{2x-1}{2x+3} = \pm e^{-8kt+8C_{0}} = De^{-8kt}, \quad D = \pm e^{8C_{0}}$$
When $t = 0, x_{0} = \frac{3}{2}$

$$\frac{2\left(\frac{3}{2}\right)-1}{2\left(\frac{3}{2}\right)+3} = De^{0}$$

$$D = \frac{4}{12} = \frac{1}{3}$$

$$\frac{2x-1}{2x+3} = \frac{1}{3}e^{-8kt}$$

$$x\left(6-2e^{-8kt}\right) = 3e^{-8kt} + 3$$

$$x = \frac{3+3e^{-8kt}}{6-2e^{-8kt}}$$

Not completing the _ square properly. factorising Not properly: $4x^2 + 4x - 3$ $\neq (x-0.5)(x+3.5).$ Ignoring the coefficient of x and |.|when integrating: $\int \frac{1}{2x-1} \mathrm{d}x \neq \ln(2x-1) + c$ $\int \frac{1}{2x-1} dx = \frac{1}{2} \ln |2x-1| + c$ Or $\int \frac{1}{\left(2x+1\right)^2 - 2^2} \, \mathrm{d}x$ $\neq \frac{1}{2(2)} \ln\left(\frac{2x+1-2}{2x+1+2}\right) + c$ $\int \frac{1}{(2x+1)^2 - 2^2} \, dx$ $=\frac{1}{2}\left(\frac{1}{2(2)}\ln\left|\frac{2x+1-2}{2x+1+2}\right|\right)+c$ Not using the initial condition $t = 0, x = \frac{3}{2}$. Not making x the subject, even though the question request to find x in terms of k and t.

END OF PAPER

9758/01/2024

Solution and Comments for 2024 H2 Math Prelim P2

Section A: Pure Mathematics [40 marks]

- 1 (a) Find $\int \ln x \, dx$.
 - (b) The region *A* is bounded by the curve $y = \frac{1}{2}\sqrt{\ln x}$, *x*-axis and the line x = 5. Find the exact volume when *A* is rotated 2π radians about the *x*-axis. [3]

[2]

1	Solutions [5] Integration	Comments
(a)	$\int \ln x dx$ = $\int (1) \ln x dx$ = $x \ln x - \int \left(\frac{1}{x}\right) x dx$ $\frac{u = \ln x}{du} = \frac{1}{x}$ $\frac{dv}{dx} = 1$ = $x \ln x - \int 1 dx$ = $x \ln x - x + c$	There is mixed responses from the students. There's a group of students who $\int \ln x dx = \frac{1}{x} + C$ which is clearly incorrect . There is another group of students who <u>left out the constant of</u> <u>integration</u> and <u>they were</u> not awarded the full marks.
(b)	Volume $= \pi \int_{1}^{5} \left(\frac{1}{2}\sqrt{\ln x}\right)^{2} dx$ $= \frac{\pi}{4} \int_{1}^{5} \ln x dx$ $= \frac{\pi}{4} [x \ln x - x]_{1}^{5}$ $= \frac{\pi}{4} (5 \ln 5 - 5 + 1)$ $= \frac{\pi}{4} (5 \ln 5 - 4) \text{ units}^{3}$	Studentsshouldwriteclearlytheirworkingsandnomarkswillbeawardedforcontentwhichthemarkersarenotabletoread.Some studentsdidnotsimplifytheirfinalanswerandhavemarksdeductedaswell.swell.Studentsshouldmakeuseoftheircalculatorforevaluationoftheiranswer(ifrequired)andshould
		penalise themselves, for example $5^5 \neq 25$!

2 Functions f and g are defined by

f:
$$x \mapsto x + e^x$$
, for $x \in \mathbb{R}, x > -2$,
g: $x \mapsto \ln x$ for $x \in \mathbb{R}, x > \frac{1}{e}$.

- (a) Show that f has an inverse.
- (b) Show that the composite function fg exist and find fg(x).
- (c) Hence find the value of x which satisfies $g(x) = f^{-1}(x)$. [3]

[1]

[3]

2	Solution [7] Functions	Comments
(a)		Generally well-done for
	$y \uparrow $	students who used "at most once". Those who used
		"exactly" once tended to
		make mistake when a line
	$\int f(r) = r + e^{r}$	they proposed (e.g $y = k$, where $k > -2$) that does not
		even cut the graph of $y =$
	y = k	f(x) when $k = -1.9$.
	-2	
	\rightarrow	
	Ċ	
	Any horizontal line $y = k$, where $k \in \mathbb{R}$ cuts the graph of	
	y = f(x) at most once. Therefore, f is a one to one function.	
	Thus, f has an inverse.	
(b)	$R_{\rm g} = (-1,\infty) \subseteq (-2,\infty) = D_{\rm f}$	Generally well-done.
	Therefore, the composite function fg exist.	
	$\mathrm{fg}(x) = \mathrm{f}(\ln x)$	
	$=\ln x + \mathrm{e}^{\ln x}$	
	$=\ln x + x.$	
(c)	$g(x) = f^{-1}(x)$	Many did not realise that
	$\operatorname{fg}(x) = x$	with f so that part (b)
	$\ln x + x = x$	expression for fg can be
	$\ln x = 0$	used. Some attempted to find f^{-1}
	x = 1	but was not successful.

A function f is defined by $f(x) = ax + b + \frac{c}{x-1}$, where a, b and c are constants. The graph of x = f(x) has a minimum point at (2.5.12) and also passes through the x axis at (0.12)

- y = f(x) has a minimum point at (2.5,13) and also passes through the y-axis at (0,-12).
- (a) Find the values of a, b and c.

3

(b) Sketch the graph of y = f(x), stating clearly any asymptotes, axial intercepts and turning points. [3]

[4]

	-	
3	Solutions [7] LSoE + Graphing Techniques	Comments
(a)	f(0) = -12	This question ought to be
		standard and manageable
	$b + \frac{c}{1} = -12$	but quite a significant
	-1	number of students fail to
	b - c = -12	obtain the correct values
		for a, b and c.
	f(2.5) = 13	They either made errors in
		substitution or calculations
	$2.5a+b+\frac{1}{25-1}=13$	or they differentiated $f(x)$
	2.5 1	wrongly
	$2.5a + b + \frac{2}{2}c = 13$	wiongry.
	3	
	$f(x) = ax + b + \frac{c}{c}$	
	x-1	
	f'(x) = a c	
	$1^{-1}(x) - a - \frac{1}{(x-1)^2}$	
	f'(2,5) = 0	
	I(2.5) = 0	
	$a = \frac{c}{c} = 0$	
	$a = \frac{1}{(2.5-1)^2} = 0$	
	$a - \frac{4}{2}c = 0$	
	9	
	Solving,	
	a = 4, b = -3 and c = 9.	

5

The diagram shows a square *PQRS* of side *p* metres. The points *X* and *Y* lie on *PQ* and *QR* respectively such that PX = x m and QY = qx m, where *q* is a constant such that q > 1.

- (a) Given that the area of triangle XYS is A m², show that $A = \frac{1}{2}(qx^2 px + p^2)$. [3]
- (b) Given that x can vary, show that QY = YR when A is minimum and express the minimum value of A in terms of p and q. [6]

4	Solution [9] Applications of Differentiation	Comments
(a)	$A = \text{Area of } PQRS - \text{ area of } \Delta SPX - \Delta QXY - \Delta RSY$	Fairly well attempted.
	$= p^{2} - \frac{1}{2}xp - \frac{1}{2}xq(p-x) - \frac{1}{2}p(p-qx)$ $= p^{2} + \frac{1}{2}(-xp - pqx + qx^{2} - p^{2} + pqx)$	There were some with quite difficult to read handwriting and did not show the steps clearly.
	$=\frac{1}{2}(qx^2 - px + p^2).$ (shown)	Some went to find the height and base of triangle <i>XYS</i> and its not a feasible method to prove the required result.
(b)	p and q are constants, we differentiate A wrt x ,	This is quite a straight
		forward question.
	$\frac{dA}{dx} = \frac{1}{2}(2qx - p)$ Let $\frac{dA}{dx} = 0$	There was quite a number who just proclaimed that YR=QY after obtaining 2qx = p, which is not
	$x = \frac{p}{2q}$	allowed as this is a shown question; so more details
	Hence $PX = \frac{p}{2q} \& QY = q(\frac{p}{2q}) = \frac{p}{2}$	are needed to show explicitly.
	Since RQ and SP are sides of a square, $RQ = SP = p$	the question requires you to
	$YR = RQ - QY = p - QY = \frac{p}{2} = QY \text{ (shown)}$	prove $QY = YR$, and this is not a fact to use it at the start
	$\frac{d^2 A}{dx^2} = \frac{1}{2} (2q) = q > 1 > 0$ (so A is minimum)	of the question. Many students forgot to use 2^{nd} derivative to prove that

©RIVER VALLEY HIGH SCHOOL

now, minimum A occurs when $x = \frac{p}{2q}$ $A = \frac{1}{2} \left(q \left(\frac{p}{2q} \right)^2 - p \left(\frac{p}{2q} \right) + p^2 \right)$ $= \frac{1}{2} \left(\frac{p^2}{4q} - \frac{p^2}{2q} + p^2 \right)$	A is minimum. And also not ascertaining why $q > 0$ (the reason is because it is given q > 1, so it has to be > 0). Note : those who just declare 2^{nd} derivative > 0 without a reason will have 1 mark deducted
$= \frac{p^2}{2} \left(1 - \frac{1}{4q} \right)$	Most students know to substitute and put into the area A expression in (a). However the algebraic manipulation is very badly done with all sorts of mistakes. A significant number were able to reach $\frac{1}{2}\left(\frac{p^2}{4q} - \frac{p^2}{2q} + p^2\right)$ but went on to simplify wrongly, which means they are not awarded the full credit!
	As a general rule of thumb, if the final answer after simplifying is wrong, full marks will not be earned even though the intermediate working was correct.

5 Do not use a calculator in answering this question.

Let P(z) be a polynomial with real coefficients and $z = re^{i\theta}$ is one the roots of the equation P(z) = 0.

- (a) Show that $z^2 (2r\cos\theta)z + r^2$ is a quadratic factor of P(z). [3]
- (b) Given that $z^4 z^3 + z^2 z + 1 = (z^2 az + 1)(z^2 bz + 1)$, for real values *a* and *b*, and that b < 0 < a, find exact values for *a* and *b*. [4]

(c) By considering
$$1+z^5$$
, verify that $z = e^{i\frac{\pi}{5}}$ is a root to the equation $z^4 - z^3 + z^2 - z + 1 = 0$.
[2]

(d) Show that
$$\cos\left(\frac{\pi}{5}\right) = \frac{1+\sqrt{5}}{4}$$
. [3]

5	Solution [12] Complex Number + APGP	Comments
(a)	Since $z = re^{i\theta}$ is a root to the equation $P(z) = 0$, $(z - re^{i\theta})$ is a factor of $P(z)$ As all coefficients of $P(z) = 0$ are real and $z = re^{i\theta}$ is a root, $z^* = re^{i(-\theta)}$ is also a root. Thus $(z - re^{i(-\theta)})$ is also a factor of $P(z)$. Multiplying both factors together, we get a quadratic factor of $P(z)$: $(z - re^{i\theta})(z - re^{i(-\theta)}) = z^2 - re^{i\theta}z - re^{i(-\theta)}z + (re^{i\theta})(re^{i(-\theta)})$ $= z^2 - r(e^{i\theta} + e^{i(-\theta)})z + r^2e^{i\theta + i(-\theta)}$ $= z^2 - r(2Re(e^{i\theta}))z + r^2e^{i(\theta - \theta)}$ $= z^2 - 2rz\cos\theta + r^2$ (shown)	A few students did not explain appropriately why the conjugate of z is also a root of the equation. Instead of forming the quadratic factor by the product of the linear factors, some students formed with the product of the roots $(z \times z^*)$ instead!
(b)	$z^{4} - z^{3} + z^{2} - z + 1 = (z^{2} - az + 1)(z^{2} - bz + 1)$ Comparing coefficient of z or z^{3} , -a - b = -1 a + b = 1, Comparing coefficient of z^{2} , 2 + ab = 1 ab = -1 Solving, a(1-a) = -1 $a^{2} - a - 1 = 0$ $a = \frac{1 \pm \sqrt{1 - 4(1)(-1)}}{2} = \frac{1 \pm \sqrt{5}}{2}$ As $b < 0 < a$, $a = \frac{1 + \sqrt{5}}{2}$, $b = 1 - \frac{1 + \sqrt{5}}{2} = \frac{1 - \sqrt{5}}{2}$. Therefore,	This part is generally well done, with a few students making errors in calculations or not realising that we cannot use calculators to find the roots here.

©RIVER VALLEY HIGH SCHOOL

Section B: Statistics [60 marks]

6 The number 396900 can be expressed as $2^2 \times 3^4 \times 5^2 \times 7^2$.

A factor of 396900 can be expressed in the form $2^a \times 3^b \times 5^c \times 7^d$ for non-negative integers *a*, *b*, *c* and *d*. For example, 3150 and 140 are factors of 396900 and they can be expressed as $2^1 \times 3^2 \times 5^2 \times 7^1$ and $2^2 \times 3^0 \times 5 \times 7$ respectively.

[1]

[1]

- (a) State all the possible values for *a*.
- (b) Find the number of factors of 396900.

A factor of 396900 is chosen randomly.

(c) Find the probability that the chosen factor is divisible by 3 given that it is even. [3]

6	Solution [5] Probability	Comments
(a)	0, 1, 2	Most students either know
		how to approach these two
(b)	<i>a</i> has 3 possibilities (namely 0 to 2)	parts or are totally clueless.
	<i>b</i> has 5 possibilities (namely 0 to 4)	-
	c has 3 possibilities (namely 0 to 2)	
	d has 3 possibilities (namely 0 to 2)	
	Total number of factors $= 3 \times 5 \times 3 \times 3 = 135$	
(c)	Number of even factors $= 2 \times 5 \times 3 \times 3 = 90$	While many students
	(As <i>a</i> has only 2 possibilities, 1 or 2)	realised the need for
		conditional probability,
	Number of even factors that is divisible by 3	quite many of them students
	$= 2 \times 4 \times 3 \times 3 = 72.$	could not solve the question
	(Now b only has 4 possibilities, namely 1 to 4)	completely.
	P(factor is divisible by 3 factor is even)	
	$P(\text{factor is divisible by } 3 \cap \text{factor is even})$	
	P(factor is even)	
	n (even factors divisible by 3)	
	n (all factors)	
	= <u>n(even factors)</u>	
	$\frac{n(all factors)}{n(all factors)}$	
	\underline{n} (even factors divisible by 3)	
	n (even factors)	
	72 4	
	$=\frac{1}{90}=\frac{1}{5}$	

7 Company A consists of 15 men and 10 women on its staff. 10 staff are to be selected to join a contest as Team A. The random variable *R* denotes the number of men in Team A.(a) Show that

$$\mathbf{E}(R) = \sum_{r=0}^{10} \left[r \times \frac{\binom{15}{r} \binom{m}{10-r}}{n} \right], \text{ for } r = 0, 1, 2, ..., 10,$$

[3]

[3]

where *m* and *n* are real constants to be determined.

(b) Use your calculator to find E(R) and Var(R).

Company B also consists of male and female staff where 10 staff are to be selected to join the same contest as Team B, and Q denotes the number of men in the team. It is known that E(Q) = 6.25 and Var(Q) = 3.

Before both companies finalise their teams, they decide to study the different team configurations further by generating a list of random samples of the teams.

(c) Estimate the probability the mean number of men in 30 random samples of Team A exceeds the mean number of men in 30 random samples of Team B. [4]

7	Solutions [10] PnC + DRV + Sampling	Comments
(a)	For $r = 0, 1, 2,, 10$, The number of ways to choose r men and $10 - r$ women $= \begin{pmatrix} 15 \\ r \end{pmatrix} \begin{pmatrix} 10 \\ 10 - r \end{pmatrix}.$ Total number of ways to make a team $= \begin{pmatrix} 25 \\ 10 \end{pmatrix} = 3268760$ So,	This question proved challenging to students. There was a strong minority that did not attempt the question. A few students thought that this was a Binomial
	$P(R = r) = \frac{\binom{15}{r}\binom{10}{10-r}}{3268760}$	Distribution, but the probability of picking a man is not constant, failing the criteria of a Binomial Distribution.
	$E(R) = \sum_{r=0}^{10} \left[r \times P(R=r) \right]$ = $\sum_{r=0}^{10} \left[r \times \frac{\binom{15}{r} \binom{10}{10-r}}{3268760} \right] $ (Shown)	Many were randomly trying out methods, and many managed to deduce <i>m</i> by sheer guessing. Stronger responses recalled that $E(R) = \sum_{n=1}^{10} [r \times P(R = r)]$
		and noticed that the fraction was merely just $P(R=r)$.

		Different strategies were seen here, either listing (not recommended) or showing the general case directly(recommended).
(b)	From (a) $E(R) = \sum_{r=0}^{10} \left[r \times \frac{\binom{15}{r} \binom{10}{10-r}}{3268760} \right] = 6 \text{ by GC.}$ $Var(R) = E(R^2) - E(R)^2$ $= \sum_{r=0}^{10} \left[r^2 \times \frac{\binom{15}{r} \binom{10}{10-r}}{3268760} \right] - 6^2$ $= 37.5 - 36$ $= \frac{3}{2}.$ GC Steps: Alternative 1 by Summation: $\frac{1000}{\binom{12}{r} \times \binom{10}{\sqrt{2}} \binom{10}{\sqrt{2}}}{\binom{10}{3268760}} = 6^2$ $= 37.5 - 36$ $= \frac{3}{2}.$ GL Steps: Alternative 2 by Summation: $\frac{1000}{\binom{12}{r} \times \binom{10}{\sqrt{2}} \binom{10}{\sqrt{2}}}{\binom{10}{\sqrt{2}} \binom{10}{\sqrt{2}}} = \frac{100}{\sqrt{2}} \underbrace{\frac{100}{\sqrt{2}} \binom{10}{\sqrt{2}}}{\binom{10}{\sqrt{2}} \binom{10}{\sqrt{2}} \binom{10}{\sqrt{2}}} \underbrace{\frac{100}{\sqrt{2}} \binom{10}{\sqrt{2}} \binom{10}{\sqrt{2}}} \underbrace{\frac{100}{\sqrt{2}} \binom{10}{\sqrt{2}}}{\binom{10}{\sqrt{2}} \binom{10}{\sqrt{2}}} \underbrace{\frac{100}{\sqrt{2}} \binom{10}{\sqrt{2}}} \underbrace{\frac{100}{\sqrt{2}} \binom{10}{\sqrt{2}}}{\binom{10}{\sqrt{2}} \binom{10}{\sqrt{2}} \binom{10}{\sqrt{2}}}} \underbrace{\frac{100}{\sqrt{2}} \binom{10}{\sqrt{2}}} \underbrace{\frac{100}{\sqrt{2}} \binom{10}{\sqrt{2}} \binom{10}{\sqrt{2}}} \underbrace{\frac{100}{\sqrt{2}} \binom{10}{\sqrt{2}}} \underbrace{\frac{100}{\sqrt{2}} \binom{10}{\sqrt{2}}} \underbrace{\frac{100}{\sqrt{2}} \binom{10}{\sqrt{2}} \binom{10}{\sqrt{2}} \binom{10}{\sqrt{2}} \underbrace{\frac{100}{\sqrt{2}} \binom{10}{\sqrt{2}}} \underbrace{\frac{100}{\sqrt{2}} \binom{10}{\sqrt{2}}} \underbrace{\frac{100}{\sqrt{2}} \binom{10}{\sqrt{2}}} \underbrace{\frac{100}{\sqrt{2}} \binom{10}{\sqrt{2}} \binom{10}{\sqrt{2}} \binom{10}{\sqrt{2}}} \underbrace{\frac{100}{\sqrt{2}} \binom{10}{\sqrt{2}} \binom{10}{\sqrt{2}} \binom{10}{\sqrt{2}} \binom{10}{\sqrt{2}} \binom{10}{\sqrt{2}} \binom{10}{\sqrt{2}} \binom{10}{\sqrt{2}} \binom{10}{2$	This question proved challenging to students. There are few that thought that this was Binomial Distribution and applied the formula for that here. Again, it does not apply in this situation. The summation notation in part (a) was a hint to use the GC's summation function. Those who did so, quickly and accurately solved the question. Students are recommended to write the formulas of what needs to be found, as specially for a 'high' mark question.

	To get the variance, go to 'VARS' and selection option 5:Statistics Then, select σ_X , this gives you the standard deviation. MORTHAL FLOAT DEC REAL RADIAN HP WERES Y-VARS COLOR 1:Window 2:Zoom 3:GDB 4:Picture & Background 5:Statistics 6:Table 7:String Square the value to achieve the variance. NORTHAL FLOAT DEC REAL RADIAN HP σ_X^2 1.5.	
(c)	Since $n = 30$ is large, by CLT, $\overline{R} \sim N(6, \frac{1}{20})$ approx, $\overline{Q} \sim N(6.25, \frac{1}{10})$ approx $\overline{R} - \overline{Q} \sim N(-0.25, \frac{1}{20} + \frac{1}{10}) = N(-0.25, \frac{3}{20})$ approx $P(\overline{R} > \overline{Q})$ $= P(\overline{R} - \overline{Q} > 0)$ = 0.259 (3 s.f.)	This question proved extremely challenging to many students. The question hinted at an approximation via the word "Estimate". This should lead one to realise CLT was involved. Many did not realise that both <i>R</i> and <i>Q</i> are NOT
		normal distributions. Moreover, this was a misconception that CLT implied that both R and Q will become normal distributions approximately . Instead, CLT implies that their means, i.e. \overline{R} and \overline{Q} are normal distributions approximately .

- 8 Long standing data indicates that customers of 80% of all table reservations at a restaurant will turn up. For this question, assume that all tables can only be reserved once in a dinner service and customers stay until the end of dinner service.
 - (a) One day, a restaurant has 14 table reservations for dinner service.
 - (i) Find the expectation and variance for the number of table reservations where the customers turn up. [2]
 - (ii) Find the probability that at least 9 table reservations but less than 13 have their customers turn up.[3]
 - (b) Find the probability that, for dinner service on two days with 14 table reservations each, there is a total of exactly 24 table reservations where the customers turn up. [2]
 - (c) A restaurant manager of a 30-table restaurant decides to offer more table reservations than the full capacity. Find the maximum number of table reservations that the manager can offer such that there is a probability of at least 85% that the restaurant will not exceed full capacity for a dinner service. [3]

8	Solution [10] Binomial Distribution	Comments
(ai)	Let X be the random variable denoting the number table	Most can do this quite easily.
	reservations where the customer did turn up for the dinner	Take note however that 80%
	out of 14 table reservations.	means just 0.8 and not 0.80
	$X \sim B(14, 0.8)$	strictly speaking.
	E(X) = (14)(0.8)	And have the context is all
	=11.2	about NUMBER OF
	Var(X) = (14)(0.8)(0.2)	TABLE RESERVATIONS
	-2.24	and not number of customers.
	- 2.2 4	
(aii)	$P(9 \le X < 13) = P(9 \le X \le 12)$	Poorly attempted despite this
	-P(X < 12) - P(X < 8)	being a very simple part to
	$-1(X \le 12) - 1(X \le 0)$	score in.
	= 0.75823	Quite many somehow
	= 0.758(3 s.f)	interpreted this as a
		conditional probability
		situation which is wrong.
		A handful of students went on
		to treat as normal distribution,
		mistakonly assumed that
		expectation and variance
		information implies normal
		distribution (very serious
		conceptual error).
(b)	Let <i>Y</i> be the random variable denoting the number table	Here, you need to combine
	reservations where the customer did turn up for the dinner out	the scenario for 2 days so total
	of 28 table reservation.	number is now out of 28.
	$Y \sim B(28, 0.8)$	Probability is still 0.8.
	P(Y = 24) = 0.155 (3 s.f)	A small number bayed in CC
		A small number keyed in GC
		which is wrong Vou are
		required to use binompdf
		here!

(c)	Let <i>T</i> be the random variable denoting the number of table reservations where the customers turn up, out of <i>n</i> table reservations. $T \sim B(n, 0.8)$ $P(T \le 30) \ge 0.85$ From GC.	More well answered than (a)(ii) which is surprising as this is considered a more challenging part. Those who could not get it sometimes confuse the
	n P(T ≤ 30) 35 0.85651 ≥ 0.85 36 0.75363 < 0.85	notations. Take note the issue to solve here is n (represented as
	Maximum n = 35 <u>Guidance screenshots for GC keystrokes:</u>	unknown X in GC). Full capacity means at most 30.
	HORHAL FLOAT AUTO a-bi RADIAN MP binomcdf trials:X p:0.8 x value:30 Y3= Y4= Y5= Y6= Y7= Y8= Y9=	Here, the answer must be shown with a relevant table as shown on the left to be awarded the full marks.
	NORMAL FLOAT AUTO 0.061 MP Y1 32 0.9732 33 0.8565 36 0.7566 37 0.6502 38 0.4565 39 0.5302 38 0.4597 38 0.4597 38 0.4597 39 0.5822 40 0.2682 42 0.1182 x=32 (see when it last reaches more than 0.85)	
		Students are strongly recommended to compare this question with the 2022 prelim P2/Q11 paper on the left handed characteristic scenario and see the difference. It would complete your learning more meaningfully.

9 (a) A scientist is studying the growth of water lilies in a large lake. He planted a water lily at one corner and he measures the area, $A \text{ km}^2$, the water lilies cover on day *t*. His results are recorded below:

Time, <i>t</i> (days)	1	4	7	14	20	29
Area, A (km ²)	0.6	1.3	3.7	7.4	8.6	9.2

(i) Draw a scatter diagram to illustrate the data.

[1]

- (ii) The scientist would like to predict the future growth of the water lilies. Using the scatter diagram and the context of the question, state two reasons why, in this context, a linear model is not appropriate. [2]
- (b) It is proposed to fit the above data with a model of the form $\ln(D-A) = a+bt$, where D is a suitable constant. The product moment correlation coefficient between t and $\ln(D-A)$ is denoted by r. The following table gives values of r for some possible values of D.

D	9.5	9.8	10
r		-0.99359	-0.99114

- (i) Calculate the value of r for D = 9.5, giving your answer correct to 5 decimal places. Hence, explain which of 9.5, 9.8 or 10 is the most appropriate value of D for the model to fit. [2]
- (ii) Using this value of *D*, calculate the values of *a* and *b* correct to 5 decimal places, and use them to predict the area covered by water lilies after 28 days. Comment on whether the estimate is reliable. [4]
- (iii) Give an interpretation, in context, of the value of *D*. [1]

9	Solutions [10] CnR	Comments
(ai)	Plot1:L1,L2	Common errors:
	$ _{9,2} \neq A/km^2$ + (29,9,2)	 Not indicating units
	1 ⁺ + ⁻ ⁻	for axes
		• Not labelling range of
	$(1,0\pi 6)$ +	values of A and t
	29 0 + 11.	
	X=29 Y=9.2 U Mays	
(aii)	A linear model is not likely to be appropriate as the area	Some students provided
	covered would then increase infinitely. However, the area of	reasons just based on
	lake is finite.	scatter diagram but not
		on the context of the
	Moreover, the scatter diagram shows a curvilinear trend such	question.
	that as <i>t</i> increases, <i>A</i> increases at a decreasing rate, which are	For the contextual
	not well represented by linear model.	reason, students should
		highlight the
		implication of linear

(bi)	For $D = 9.5$, $r = -0.99602$ Since $D = 9.5$ gives a value of $ r $ is closer to 1, compared to the other 2 values, it is the most appropriate for the model to fit.	model in that the area covered would increase infinitely and that it is not possible due to limit in size of lake. Some students had difficulties in correct set up of GC data entry in calculation of r value and subsequently the value of a and b for part
		value of <i>u</i> and <i>b</i> for part b(ii). Some students provided wrong reason stating that <i>r</i> is closer to 1 instead of <i>r</i> closer to -1 or $ r $ is closer to 1.
(bii)	a = 2.510165315; b = -0.1277379 Equation of regression line is $\ln(9.5 - A) = 2.51017 - 0.12774 t$ When $t = 28$, $\ln(9.5 - A) = -1.06655$ $\ln(9.5 - A) = -1.06655$ 9.5 - A = 0.3441939 A = 9.15581	Generally no problem for this part except for students not leaving their answers for <i>a</i> and <i>b</i> in 5 decimal places.
	When $t = 28$, it is within the data range $(1 \le t \le 29)$, and since the product moment correlation coefficient between $ln(9.5 - A)$ and <i>t</i> is close to -1 , the estimate calculated for <i>A</i> is expected to be reliable.	Many students did not mention about value of r being close to -1 in concluding that estimate is reliable.
(biii)	<i>D</i> is the likely long-term maximum/upper bound area covered by the water lilies. (Note: It is the maximum as $\ln(D-A) = 2.51 - 0.128t \Rightarrow D-A > 0 \Rightarrow A < D$. Moreover, $\ln(D-A) = 2.51 - 0.128t \Rightarrow A = D - e^{2.51 - 0.128t}$ $\Rightarrow D - A = e^{2.51 - 0.128t} \Rightarrow A = D - e^{2.51 - 0.128t}$ When $t \to \infty$, $e^{2.51 - 0.128t} \to 0$. This implies that when $t \to \infty$, $A \to D$.)	 Common errors: D is the maximum area of the lake D is the total area of the lake For students who mentioned about area covered by the water lilies, they failed to highlight about D being the likely long-term maximum value.

- 10 An internet advertising company *TicTakAim* claims that viral video's duration has a mean duration of 30 seconds. An influencer wants to investigate the company's claim as she believes that the company is underestimating the mean duration. However, she is unable to record the durations of all the viral videos.
 - (a) Explain how she could obtain a sample of viral video durations, and why she should obtain the sample in this way. [2]

The influencer takes a sample of 90 viral video's durations. The viral video's durations, x seconds, are summarised as follows.

$$\Sigma(x-30) = 90$$
 $\Sigma(x-30)^2 = 2037$

- (b) Find the unbiased estimates of the population mean and variance of the durations of viral videos. [2]
- (c) Carry out an appropriate test, at the 3% level of significance, whether the company's claim is justifiable. You should state your hypotheses and define any symbols you use. [4]
- (d) Explain, in the context of the question, the meaning of "at the 3% level of significance". [1]
- (e) The influencer was later informed that the population standard deviation of the viral video duration is σ seconds. Find the set of values of σ so that the influencer can conclude that there is sufficient evidence at the 3% level of significance to believe that *TicTakAim* is underestimating the mean duration. [3]

 (a) She should conduct a <u>random sampling</u> of the population of the duration of the viral videos. This is because, the sampling will be <u>unbiased</u> or that each viral video will have an equal chance of being selected into the sample. Most responses stated that a random sample should be chosen; quite a number gave details of how this could be done, which was not required and was not always random. In this question, explicit knowledge on how to obtain the sample is not required. There is a need to explain that the reason for random sampling – to avoid bias. Others brought up the reason as "each video will have an equal chance of being selected into the sample" but often neglected the phrase "into the sample" or used other words like "same", "constant". 	10	Solution [12] Hypothesis Testing	Comments
to standard key words and phrasings.	10 (a)	Solution [12] Hypothesis Testing She should conduct a <u>random sampling</u> of the population of the duration of the viral videos. This is because, the sampling will be <u>unbiased</u> or that each viral video will have an equal chance of being selected into the sample.	Comments Most responses stated that a random sample should be chosen; quite a number gave details of how this could be done, which was not required and was not always random. In this question, explicit knowledge on how to obtain the sample is not required. There is a need to explain that the reason for random sampling – to avoid bias . Others brought up the reason as "each video will have an equal chance of being selected into the sample" but often neglected the phrase "into the sample" or used other words like "same", "constant". Students are advised to stick to standard key words and phrasings.
			Some students mentioned

		only that duration of viral videos should be chosen independently without also saying that they should have an equal chance of being chosen, which is insufficient.
		majority of responses included that the sample size should be of at least 30 so the Central Limit Theorem can be used. However, there is no need to do so in this part as the question has not specified that a hypothesis test is to be conducted.
(b)	Unbiased estimate of population mean, $\overline{x} = \frac{90}{90} + 30 = 31$	Generally well done.
	Unbiased estimate of population variance, $s^{2} = \frac{1}{89} \left[2037 - \frac{90^{2}}{90} \right] = \frac{1947}{89} = 21.876 = 21.9 (3 \text{ s.f.})$	Except for some making very careless mistakes in calculations or mistakenly applying the incorrect formula for s^2
(c)	Let <i>X</i> denote the mean duration of the viral videos in seconds and μ be the population mean duration of the viral videos in seconds. Test $H_0: \mu = 30$ against $H_1: \mu > 30$ at 3% level of significance. Test statistic: Under H ₀ , as $n = 90 \ge 30$ is large, by CLT, $\overline{X} \sim N\left(30, \frac{s^2}{90}\right)$ approximately ($s^2 = 21.876$.) $Z = \frac{\overline{X} - 30}{s/\sqrt{90}} \sim N(0,1)$ approximately <i>p</i> -value = 0.021264 < 0.03, (OR $z_{calc} = 2.0283 > z_{critical} = 1.8808$) Thus, we reject H ₀ . There is <u>sufficient evidence</u> at <u>3% level of significance</u> that the <u>mean duration is more than 30 seconds.</u> i.e. the company's has underestimated the duration.	Generally majority of students are able to carry out the procedures of hypothesis testing. However, a significant number are still lacking in proper presentations. Common lapses include: - Not defining μ - Using μ_0 and μ_1 in place of μ in the hypotheses - $\overline{X} \sim N\left(31, \frac{s^2}{90}\right)$ - $Z = \frac{31-30}{s^2/90} \sim N(0,1)$ - Incorrect/Incomplete phrasing of conclusion

(d)	"At the 3% significance level" means that there is a	A significant of students
	probability of 0.03 that the test concludes that the mean	could not remember this
	duration is greater than 50 seconds when in fact it is 50 seconds	own definitions which were
	<u>seconus</u> .	incorrect
	OR There is a probability of 0.03 that the test concludes	Also, it is not sufficient to
	that the company underestimated the duration when in fact	define significance level as
	it did not.	the "Probability of rejecting
		H_0 when H_0 is true", there is
		a need to <u>contextualize</u> the
		definition.
(e)	Test $H_0: \mu = 30$	There was a varying
	against $H_1: \mu > 30$	performance for this part.
	at 3% level of significance.	However even for these
	Test statistic:	who succeeded in obtaining
	Under H ₀ , as $n = 90 \ge 30$ is large, by CLT,	the solution students
	$\overline{\mathbf{X}} = \mathbf{N} \begin{pmatrix} 30 & \sigma^2 \end{pmatrix}$ approximately	commonly had lapses in
	$X \sim N\left(\frac{50, -90}{90}\right)$ approximately	setting up the test, for
	\overline{X} - 30 \overline{X} - 10	example:
	$Z = \frac{\sigma}{\sigma/100} \sim N(0,1)$ approximately	- $X \sim N(30, \sigma^2)$
	Critical region: $z > z_{critical} = 1.8808$	- $Z = \frac{31-30}{\sigma} \sim N(0,1)$
	Since H ₀ is rejected, z_{calc} is in the critical region.	<u>/</u> √90
	$z_{\rm calc} > 1.8808$	$Z = \frac{X - 31}{s} \sim N(0, 1)$
	$\frac{31-30}{\sigma} > 1.8808$	<u>/</u> √90
	$\sqrt{90}$	- $Z = \frac{X - 30}{\sigma} \sim N(0, 1)$
	$\sigma < 5.04404$	For those who did not
	$\sigma < 5.04$ (3 s.f.)	succeed, common errors
	$\{\sigma \in \mathbb{R} : 0 \le \sigma < 5.04\}.$	include:
		- Mistakenly finding
		variance by taking
		$90(\sigma^2)$
		$\overline{89}(\overline{90})$
		$-z_{calc} = \frac{30-31}{4}$
		$\sigma/\sqrt{90}$
		- Critical regions used
		for right tail or two tail
		test
		Note: By convention when
		rejecting H_0 , we do not
		include the equal sign i.e.
		$z_{calc} > 1.8808$ instead of
		$z_{\text{calc}} \ge 1.8808$. However
		students are not penalized
		tor including the equal sign.

- 11 A leather craftsman customized leather belts according to the widths of the customer's buckles. Over a period of time, it is found that the buckle widths are normally distributed. 60% of the buckles have width more than 25 mm and 15% are less than 24 mm.
 - (a) Find the mean and variance of the buckle width.

[3]

The widths of the leather belts produced by the craftsman follow a normal distribution with mean 25.1 mm and standard deviation 1.4 mm.

(b) Find the probability that the width of a randomly chosen leather belt is between 24 mm and 26 mm. [1]

In order to fit the leather belts nicely into the buckles, the craftsman reduces the widths of these leather belts by 1%.

(c) Find the probability that the total width of 3 randomly chosen leather belts is less than 75.4 mm. [3]

There are holes that are punctured into the leather belts that have diameters, in mm, that follow the distribution $N(4.5,0.2^2)$.

The prong is part of the belt buckle that is also known as the pin or the "fork". It goes through any of the holes in the belt to secure the belt in place.

The diameter of the prong, in mm, follows the distribution $N(4.3,0.1^2)$.

If the diameter of a prong is more than 0.2 mm greater than the diameter of a hole, then the hole has to be enlarged to make it fit.

If the diameter of a hole is more than 0.3 mm greater than the diameter of a prong, welding is done to increase the diameter of the prong to make it fit.

- (d) A complete set of a belt is made up of a randomly chosen buckle with a prong and a leather belt with 5 punctured holes. Find the probability that for a belt, the prong can be fitted into every hole without having the holes enlarged or the prong welded. [4]
- (e) A punctured hole on a belt and a buckle with a prong are randomly chosen for inspection. State with a reason whether or not the event that the hole needs to be enlarged and the event that the prong needs to be welded are independent. [2]

11	Solutions [13] Normal Distribution	Comments
(a)	Let X be the r.v. that denotes the width of the buckle. $X \sim N(\mu, \sigma^2)$ P(X > 25) = 0.6	It was shocking that this question proved challenging to many students.
	$P\left(Z > \frac{25 - \mu}{\sigma}\right) = 0.6$ $\frac{25 - \mu}{\sigma} = -0.25335$ $\mu - 0.25335\sigma = 25$	This question type is classic and is very common in A levels, students are recommended to master this question.
		Many did not attempt the question.
		Many did not have appropriate strategies to solve this question. Many thought it was

	P(X < 24) = 0.15	DRV and attempted to use formulas based on it.
	$P\left(Z < \frac{24-\mu}{\sigma}\right) = 0.15$	Students incorrectly went to
	$\frac{24-\mu}{\sigma} = -1.0364$	find the mean via $\frac{24+25}{2}$, but
	$\mu - 1.0364\sigma = 24$	this cannot be the case as the probabilities give are not
	Solving, $\mu = 25.3$ and $\sigma = 1.2771$ (3 s f.)	equal, i.e. they are not symmetrical about the mean.
	$\sigma^2 = 1.63$ (5 s.1.)	Stronger responses went to standardise the normal distribution appropriately and use 'InvNorm' to deduce the value of the limits. Then, they solved the simultaneous equation (quickiest was using the GC) to deduce the mean and standard deviation. Lastly, they squared the s.d. to find the variance.
(b)	Let <i>Y</i> be the r.v. that denotes the width of the leather belt. $Y \sim N(25.1, 1.4^2)$	Though well done, it is a good reminder to define your variables.
	P(24 < Y < 26) = 0.524(3 s.f.)	
(c)	Let <i>B</i> be the r.v. that denotes the reduced width of the leather belt.	Generally well done.
	B = 0.99Y B ~ N(25.1×0.99,1.4 ² ×0.99 ²)	There is a minority of students that multiplied 0.99 to the
	$B \sim N(24.849, 1.386^2)$	Please recall that $Var(kX) = k^2 Var(X)$.
	$B_1 + B_2 + B_3 \sim N(74.547, 5.762988)$	
	$P(B_1 + B_2 + B_3 < 75.4) = 0.63884$ = 0.639(3 s.f.)	Another minority took $B_1 + + B_3$ as 3B instead.
		There is another minority that did not press their GC correctly, inputting the variance instead of the standard deviation to calculate the probability.
(d)	Let H and P be the r.v. that denotes the diameter of the hole	This question proved
	and prong, in mm respectively.	challenging to students.
	and one hole is independent to that the difference between diameter of the prong and another hole.)	Many students saw $H - P$ and $P - H$ as different

	$H \sim N(4.5, 0.2^2)$	independent variables, but
	$P \sim N(4.3, 0.1^2)$	other! This resulted in
	$H - P \sim N(0.2, 0.05)$	$P(-0.2 \le H - P \le 0.3) \text{ being}$
		incorrectly written as $P(H, P < 0.2)$
	$H - P \sim N(0.2, 0.05)$	$P(H - P \le 0.3)$
	P(to enlarge hole) = P(H - P < -0.2) = 0.036819	$\times P(P-H \ge 0.2).$
	P(to weld pronge) = P(H - P > 0.3) = 0.32726	Students also incorrectly
	Required Prob	resorted to finding the sum or
	$= \left[1 - P(H - P < -0.2) - P(H - P > 0.3)\right]^{5}$	5 to deal with 5 holes. Instead,
	= 0.103914	one should have powered 5, as
	= 0.104(3 s.f.)	we are multiplying the same probability by itself for 5
		times.
	Alternatively Required Prob	A minority of students went to
	$= \left[P(-0.2 \le H - P \le 0.3) \right]^{5}$	deduct the variances instead of
	= 0.103914	adding them as well.
	= 0.104(3 s.f.)	
	0.101(0.5.1.)	
	(Note: If independence is not assumed, we will have to	
	engage in a double integral. We consider the when the diameter of the prong is of a diameter x then find the	
	probability when the diameter of the hole satisfy the	
	condition: Required Prob	
	$(x-4.3)^2$	
	$= \int_{-\infty}^{\infty} \frac{1}{0.1 \sqrt{2\pi}} e^{-\frac{1}{2}(-0.1)} \left[P(-0.2 \le H - x \le 0.3) \right]^5 dx$	
	= 0.144(3 s.f.)	
(0)	Now	This quastion proved
(e)	Now, $P({H - P < -0.2} \cap {H - P > 0.3}) = 0$	extremely challenging to most
		students.
	$P(H - P < -0.2)P(H - P > 0.3) = 0.32726 \times 0.036819$	Many students went at length
	$= 0.01205 \neq 0$	on why one variable might
	(Or that $P(H - P < -0.2), P(H - P > 0.3) > 0$)	'affect' the other, providing
	Therefore, P(H - P < -0.2)P(H - P > 0.3)	Some were confused between
	= P(H - P < 0.2) P(H - P > 0.3)	the independence of the
	$\neq r(n - r < -0.2 n - r > 0.3)$ Hence, the event that the hole needs to be enlarged is not	and the independence of the
	independent from the event that the prong needs to be weld.	events of enlargement and
		welding. Many has completely forgotten the
		completely longottell the

	mathematical definition of independence.
	Better attempts show that the events are mutually exclusive, but failed to provide reason why this implied that the events were not independent. There were some attempts that confused 'mutually exclusive' events with 'independent' events.
	The best responses directly went head on to the definition of independence and showed that the mutually exclusive events cannot be independent.

END OF PAPER